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Observation of Electromagnetically Induced Transparency

K.-J. Boller, A. Imamoglu, and S. E. Harris
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(Received 12 December 1990)

We report the first demonstration of a technique by which an optically thick medium may be rendered
transparent. The transparency results from a destructive interference of two dressed states which are
created by applying & temporally smooth coupling laser between a bound state of an atom and the upper
state of the transition which is to be made transparent. The transmittance of an autoionizing (ultravio-
let) transition in Sr is changed from exp( — 20} without a coupling laser present to exp( = 1) in the pres-
ence of a coupling laser.
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Techniques that use quantum intederence effecls are being
actively investigated to manipulate the optical properties of
quantum systems'. One such example is electromagnetically
induced transparency, a quantum effect that permits the propaga-
tion of light pulses through an otherwise opagque medium® . Here
we report an experimental demonstration of electromagnetically
induced transparency in an ultracold gas of sodium atoms, in
which the optical pulses propagate at twenty million times slower
than the speed of light in a vacuum. The gas is cooled to
nanokelvin temperatures by laser and evaporative cooling” ™.
The quantum interference controlling the optical properties of
the medium is set up by a ‘coupling’ laser beam propagating at a
right angle to the pulsed ‘probe’ beam. At nanokelvin tempera-
tures, the variation of refractive index with probe frequency can
be made very steep. In conjunction with the high atomic density,
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We report the observation of small group velocities of order 90 my/'s and large group delays of
greater than 0.26 ms. in an optically dense hot rubidium gas (=360 K). Media of this kind yield
strong nonlinear interactions befween very weak optical fields and very sharp spectral features. The
result 15 in agreement with previous studies on nonlinear spectroscopy of dense coherent media.
[S0031-0007(99)00488-0]
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Electromagnetically Induced Coherent Backscattering
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We demonstrate a strong coherent backward wave oscillation using forward propagating fields only.
This is achieved by applying laser fields to an ultradispersive medium with proper chosen detunings to
excite a molecular vibrational coherence that corresponds to a backward propagating wave. The physics

then has much in common with the propagation of ultraslow light. Applications to coherent scattering and
remoie sensing are discussed.
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Coherent scattering
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The coherent space grating is determined by
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Polarization of b-c transition at the two-photon resonance




Polarization of b-c transition off the two-photon resonance
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For transition between rotational levels ~ 10 ecm™",
the required molecular density of NO and NO, molecules is N ~1.2- 10" ¢m™3



Directed Spontaneous Emission
from an

Extended Ensemble of N Atoms

Edward Fry
Anil Patnaik
Anatoly Svidzinsky
Suhail Zubairy

Texas A&M and Princeton



Piase Marenen Down Conven.

@ One Puoros = Two Prorons

.}
Dir. OF k and ¢ PuoTons

AuromaTicauy PHase Marensd

(PRL  Tan '04)



R r 7 WA . 7 week ending
PRL 96, 010301 (2006) PHYSICAL REVIEW LETTERS 13 JANUARY 2006

Directed Spontaneous Emission from an Extended Ensemble of N Atoms: Timing Is Everything
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A collection of N static atoms 1s fixed in a crystal at a low temperature and prepared by a pulse of
incident radiation of wave vector .i;“. The N atoms are well described by an entangled icke-like state, in
which each atom carries a characteristic phase factor expl .l'f'” - #;), where ¥; is the atomic position in the
crystal, It is shown that a single photon absorbed by the N atoms will be followed by spontaneous
emission in the same direction. Furthermore, phase matched emission 15 found when one photon s
absorbed by NV atoms followed by two-photon down-conversion.
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Consider an ensemble of two-level atoms,
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and incident photons of wave vector k, .




We prepare the state in which one photon
of wavevector Tc:.' is absorbed in the
ensemble of two-level atoms.

The state is such that there is one and only

one excited atom; we just do not know
which one.

It is NOT a coherent superposition of
atomic levels!

Itis an ENTANGLED STATE.



n important point, our entangled state,
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‘quite different from the state produced by a
gam of photons passing through (and interacting
takly) with an ensemble of atoms:
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'his state involves a superposition of levels with

mtributions of a small dipole moment from
ach atom. It will lead to directional emission.



‘The excited atom will then spontaneously
decay, emitting a photon.

'Will the emitted photon go into 47 sr?

Or, will it be directionally correlated with %%




In their classic paper, Eberly and Rehler say:

*We emphasize that all our results have been
derived by assuming that the plane-wave
excitation pulse leaves each atom with a finite
dipole moment. It is the relative phases of
these dipole moments which fixes the
direction of the single prominent "spike" of
the far-field radiation pattern. If all the
dipole moments are zero ..., there is no
preferred direction which is imposed by the
excitation pulse.”

In our entangled case, the dipole moments are
ZERO, and the emission is directional, Tc;
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Given a count in D2, the absence of an

immediate count in D1 ensures that one
photon has been absorbed and that this
special entangled state has been created.

Directional emission is observed via the
appearance of a delayed count in D1 that is
correlated with the count in D2.

It is a correlation measurement.

This is very different from the simple
intensity measurement with a weakly
interacting photon beam.




Finally, let's explicitly consider the
Sspontaneous decay of the normalized N-atom
entangled state,
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The interaction Hamiltonian for spontaneous
‘emission is
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Take Vi~ @, then the final state is of the form
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The last factor provides the directionality
information
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The spontaneously emitted
photon (k) has the same
direction as the

absorbed photon (l_{u)
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Dear Marlan,

| think that your letter on directional spontaneous emission from an
entangled initial state is really great. When | first saw the paper, my first
reaction was that this had to be wrong, but | redid the calculation and
sure enough, ... you are right. | then tried to see if Doppler broadening
will destroy the effect, but unless | made a mistake in the calculation, it
doesn't - anyway, | love it.

Best regards

Pierre




Dear Olga and Vitaly,

| have received a call from Munich TU group. They asked me with the
proper remarks to have a look on a paper of Marlan in PRL 96,010501
(2006). | was really shocked. The main result of this paper: " a single photon
absorbed by the N atoms [ in a crystal ] will be followed by spontaneous
emission in the same direction” was published by me many years ago ( see
Soviet Phys. JETP 23,178 (1966 ). Moreover, this result is reproduced in my
late review-paper " Theory of coherent phenomena and fundamentals in
nuclear resonant scattering " (see Hyperfine Interaction 123/124, 83 (1999))
that | am sure you have seen. The Important conclusion that follows this
result in our papers was the prediction of the disappearance (suppression)
of the resonance level width (gamma) in a crystal. In this connection the
formal expressions in Marlan paper are simply not correct.

All the best,

Yuri




Correlated Spontaneous Emission
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(Dated: September 14, 2006)

In a recent paper [1], it is shown that a single photon absorbed by N atoms

will be followed by spontaneous emission in the same direction. This paper
stimulated vigorous debate. For example, Y. Kagan states that in his
analysis of this problem: "The important conclusion that follows this result
in our papers was the prediction of the disappearance (suppression) of the
resonance level width (gamma) in crystal. In this connection the formal
expression in [1] are simply not correct." In the present paper, it is shown
that the results of [1] are correct.

[1] Phys. Rev. Lett. 96, 010501 (2006).
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