Table Top Narrow Bandwidth Tunable THz source

S. Antipov, C. Jing, and A. Kanareykin Euclid Techlabs, LLC

W. Gai, A. Zholents, Argonne National Laboratory

V. Yakimenko, Brookhaven National Laboratory

Wakefield acceleration and DLA technology

- Personal experience: wakefield studies at Argonne Wakefield Accelerator:
 - ~150nC / 8ps bunch (world record?)
 - 100 MV/m gradient demonstrated in Dielectric Loaded Accel.
 - Power extraction studies 16ns,1MW & 6ns, 30MW 26GHz rf pulse produced; Working toward 20ns 150MW
- Wakefield: charge \uparrow , bunch length \downarrow , emittance \downarrow <u>structure</u> <u>aperture \downarrow \rightarrow arrive to THz</u>
- Dielectric loaded structures: simplicity, scalability (THz), breakdown strength

Wakefield mapping in THz structure

Pump – probe experiment analogy... 0.25 THz, 1 λ sampled Energy gain of the probe beam vs time delay

S. Antipov et.al. Appl. Phys. Lett. 100, 132910 (2012)

FFTB

FFTB (SLAC)

- Fused silica tube, metallized OD=324um, ID = 100um, L=1cm
- SLAC beam $\sigma_r = 10 100$ um, $\sigma_r = 10$ um
- 16 GV/m maximum accelerating field achieved
- Metallization evaporated due to ohmic heating
- dielectric brakedown observed (maximum field on dielectric surface ~ 27 GV/m
- In fact a narrow band (long pulse) high peak power THz: 0.5THz, 3GW peak power, 2.85mJ, 2.3% BW ~ 88ps*

Thompson et al

PRL 100, 214801 (2008)

• FFTB → **FACET (2012)** *Calculations (and errors) by Antipov

THz numbers @ FACET E201/205

wake from $\sigma_{_{\! Z}}$ = 30 $\mu,$ 1nC beam, 150 μ ID / 250 μ OD quartz tube

BBU_{10%} > 0.1m

ΔE ≈ **0.9 GeV**

 $3nC/\sigma_z = 30\mu$ FACET beam

 v_g =30%, 1.5cm long structure \rightarrow 1% bandwidth

 \rightarrow 0.84 THz / 0.78 GW (peak power)

 \rightarrow 0.92mJ per pulse

TABLE TOP BEAM DRIVEN THz SOURCE ... or amplifier

Stage I demonstrated at the ATF (BNL)

^{*}Also demonstrated: energy chirp compensation

S. Antipov, et. al. Phys. Rev. Lett. 108, 144801 (2012)

Stage II: energy \rightarrow density modulation

*no energy chirp:

- Chirp is convenient for experiment
- Not required; Beam dynamics issues.
- No chirp

 frequency of bunch train equals to frequency of the wakefield structure
- Chirp allows to increase the bunch train frequency for a given wakefield modulation structure

Adjustment by chicane

Errors in stage I (beam energy over/under modulated) can be corrected by chicane in stage II

Stage II: demonstrated at ATF (BNL)

Rectangular 1.7mm beam

To CTR interferometry

- Compact (regular 1" optical breadboard), permanent magnet chicane (motorized)
- 2" long 600um aperture Kapton tube (thin wall), metallized on the outside

* S. Antipov, et. al. being prepared for publication

Measured interferogram: no chicane

@ Accelerator Test Facility, BNL

Measured CTR interferogram: with chicane

@ Accelerator Test Facility, BNL

Table top beam-based THz source

Flexible: each step has a tuning range

Stage III: power extraction in numbers

extraction structure	Beam @ the entrance	THz Radiation @ the exit
0.3mm / 0.4mm Quartz 3cm long	(ATF beam) 2.4mm, 0.8nC rectangular, bunched	6 MW peak, 0.7THz, 161ps pulse, 0.9%BW, 1.4mJ per pulse
1mm / 1.2mm Quartz 10cm long	(AWA beam) 6.3mm, 10nC rectangular, bunched	0.5 GW peak, 0.3THz, 320ps pulse, 1%BW, 155mJ per pulse