Intense Broadband Terahertz from FACET at SLAC

Alan Fisher and Ziran Wu SLAC National Accelerator Laboratory

> Workshop on Terahertz Sources Argonne National Laboratory 2012 July 30-31

Purpose

- Longitudinal diagnostics of compressed electron bunches
- High peak fields for THz science

The FACET User Facility at SLAC

- Facility for Advanced Accelerator Experimental Tests
 - Provides highly compressed e^- (and soon e^+) bunches at high energy and with high charge
 - Uses the first 2 km of the SLAC linac
- Experiments include:
 - Plasma wakefield acceleration
 - Dielectric wakefield acceleration
 - Ultrafast magnetic switching
 - Smith-Purcell radiation
 - Terahertz radiation

FACET and the SLAC Linac

FACET Beam Parameters

	2012 Run Typical Best		Design	
Energy	20.35	21.1	23	GeV
Charge	2.5-2.9	3.2	3.2	nC
• Size at focus (σ_x)	35	20	20	μm
$(\sigma_{\!\scriptscriptstyle y})$	35	23	20	μm
• Bunch length (σ_z)	25–30	<25	<20	μm
$(\sigma_{\!\scriptscriptstyle t})$	83–100	<83	<67	fs
Repetition rate	10	10	30	Hz

THz Table and the FACET IP

- THz source: Coherent transition radiation from two 1-μm-thick Ti foils
 - 10–14 m before main focus at experiments on the IP Table
 - Allows parasitic operation and use of THz for beam diagnostics
 - But e-beam at THz foil is larger than at IP

Upstream IP Table

THz table

Plasma oven

Upstream IP table

Downstream IP table

IP Tables

THz Table with Dry-Air Enclosure

Layout of the THz Table

Optics for Upstream Foil

Michelson Interferometer

Finding the Peak Electric Field

 Electric field at the focus modeled as a Gaussian $E = E_0 \exp \left[-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2} \right) \right]$

Energy in the pulse

- $W = \iiint \frac{1}{2} \varepsilon_0 E^2 dx dy dz = \frac{1}{2} \pi^{3/2} \varepsilon_0 E_0^2 \sigma_x \sigma_y \sigma_z$
- Dependence on bunch charge q, bunch compression σ_z :
 - Field $E_0 \sim q/\sigma_z$
 - Energy $W \sim E_0^2 \sigma_z \sim q^2/\sigma_z$
- Coherence
 - Less energy, due to incoherent emission, for wavelengths $\lambda \leq \sigma_{x,y,z}$
- Measurements needed:
 - Knife-edge scans, for widths of focus $\sigma_{x,y}$
 - Michelson interferometer, for pulse duration $\sigma_t = \sigma_z/c$
 - Pyroelectric joulemeter, for pulse energy W

Knife-Edge Scans at a THz Focus

Horizontal Profile

Vertical Profile

Standard Electron Optics near the THz Table

Transverse e-Beam Size

Simulated beam with standard optics: $\sigma_x = 1.2 \text{ mm}, \ \sigma_y = 6 \ \mu\text{m}$

Measured with optical transition radiation

Refocus to Reduce Transverse e-Beam Size

Simulation comparing standard optics to a circular 85-µm beam

"Double Waist": Focus remains at IP, but *x* size at foil is reduced:

$$\sigma_x = 317 \mu \text{m}, \, \sigma_y = 36 \mu \text{m}$$

Scan of the Michelson Interferometer

Interferogram

Spectrum

Reflections from detector layers lead to spectral modulation.

Restoring Low Frequencies and Phase

Spectrum after Low-Frequency Compensation

Model low-frequency loss as a filter:

$$1 - \exp\left(-f^2/f_0^2\right)$$

- Divide by filter, except very near f = 0
 - Just fit a parabola near f = 0
 - Result is not very sensitive to fit

Temporal Profile using Kramers-Kronig Phase Restoration

- Kramers-Kronig relations give phase from magnitude of form factor $f(\omega)$
- Inverse transform gives distribution f(t)

Profiles at Three Bunch Compressions

Peak Electric Field

- In the case just shown:
 - Charge of 3 nC
 - Energy in the pulse W = 0.46 mJ
 - The large $\sigma_{\rm r}$ of standard electron optics gives 0.35 mJ
 - $\sigma_x = 1.36 \text{ mm}, \ \sigma_y = 1.08 \text{ mm}$
 - $\sigma_z = 39 \ \mu m$
 - E = 5.7 MV/cm
- Measured under other conditions (but not at one time):
 - Energy = 0.7 mJ
 - Bunch length = $25 \mu m$
 - These would give 8.8 MV/cm = 0.088 V/Å
- Higher fields should be possible with a smaller beam at the foil
 - But not too small: The beam has drilled holes through 1-μm Ti foils at the IP focus

Transporting THz up to the Klystron Gallery

- First stage: Transport THz from the downstream foil to a small table in the Klystron Gallery
 - Now beginning detailed engineering
 - 19-m path, including an 8-m vertical section up through a penetration
 - Characterize pulse before and after transport: energy, focus, spectrum
- Severe diffraction of these long wavelengths
 - Large-diameter mirrors and tubing: 200 mm (8 inches)
 - Frequent refocusing with a lattice of off-axis parabolic (OAP) mirrors
 - Alternately collimating and focusing to a waist
 - Toroidal mirrors may be better for the long focal lengths at bottom and top of penetration
 - Evacuate to remove water vapor and convection (UHV unnecessary)
- Next stage: Another 20 m to the Sector-20 laser building
 - User experiments, including THz pump and laser probe

Summary

- We have characterized intense THz from CTR at FACET
 - Energy $\sim 0.5 \text{ mJ}$
 - Focus size ~ 1 mm
 - Spectrum ~ 1 THz
 - Bunch length ~ 25 fs
 - Electric fields ~ 6 MV/cm
- Higher fields should be possible with more bunch compression and charge, and a smaller transverse beam size
 - But foil breakage could be a problem
- Upgrades in planning
 - Tests of other foil materials
 - Tests of other detectors
 - THz transport line to a user area above the tunnel

Finding the Form Factor of the Bunch

• Electric field E of a bunch of N electrons at positions t_i :

$$E(t) = \sum_{j=1}^{N} E_1(t - t_j) \qquad E(\omega) = E_1(\omega) \sum_{j=1}^{N} e^{-i\omega t_j}$$

- Here E_1 is the field of one electron
- Energy in the pulse is related to the longitudinal "form factor" $f(\omega)$:

$$U_{0} = \int dt \, E^{2}(t) = \int \frac{d\omega}{2\pi} |E_{1}(\omega)|^{2} \left| \sum_{j} e^{-i\omega t_{j}} \right|^{2} = N^{2} \int \frac{d\omega}{2\pi} |E_{1}(\omega)|^{2} |f(\omega)|^{2}$$

Interferometer gives the pulse energy in an autocorrelation with a delay τ :

$$U(\tau) = U_0 + \text{Re} \int \frac{d\omega}{2\pi} |E_1(\omega)|^2 |f(\omega)|^2 e^{i\omega\tau}$$

The power spectrum $U(\omega)$ is then (neglecting the DC component):

$$U(\omega) = \left| E_1(\omega) \right|^2 \left| f(\omega) \right|^2$$

• E_1 is essentially constant at THz frequencies, and so $U(\omega)$ gives us $|f(\omega)|^2$

Retrieving the Phase with Kramers-Kronig

• If we express $f(\omega)$ in terms of its magnitude $\rho(\omega)$ and phase $\psi(\omega)$, then:

$$\ln f(\omega) = \ln \rho(\omega) + i\psi(\omega)$$

Since $\ln f(t)$ is causal, and since ρ and ψ are real, they obey the Kramers-Kronig relations, which give:

$$\psi(\omega) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} d\omega' \frac{\ln[\rho(\omega')/\rho(\omega)]}{\omega'^{2} - \omega^{2}}$$

• The magnitude and phase then let us find f(t)

Detector Response

- THz detectors are poorly calibrated and are not spectrally flat
 - Significant etalon effects (reflections from detector layers)
- Infratec has strong modulation
 - Dip in response near 0.8 THz cuts out part of spectrum
 - Not suitable for interferometer
 - Compare to model (Henrik Loos)

- Gentec has thinner layers
 - 60-GHz modulation
 - When 60 GHz is filtered, 240 GHz becomes visible
 - Better, but not ideal

Raw

Smoothed

Water Vapor

- Before and after adding the dry-air enclosure
 - Compare to transmission through 1-m of humid air
- Without dry-air enclosure
 - Dips near 0.75 and 1.2 THz
 - 3 bunch compressor settings

- With dry-air enclosure
 - Much improved, but there may still be some absorption
 - Will increase flow of dry air

Transport Line

Alignment viewport

 View HeNe alignment beam directly or with a camera

SLAC THz Workshop

Frontiers of THz Science

5-6 September, 2012, SLAC National Accelerator Laboratory

This workshop is focused on exploring and defining scientific opportunities associated with THz radiation in a wide range of scientific fields.

https://slacportal.slac.stanford.edu/sites/conf_public/THz_2012_09/Pages/default.aspx