

WELCOME

to the second SPX summer study mini-workshop

Performance Parameters*

- Engineering design specs are derived from beam physics requirements
 - SPX Physics Requirement Document (PRD) spells out performance specifications

Parameter	Scope Goal	Long Term Goal
Pulse duration (central 70% of beam)	2 ps	1 ps
Pulse duration fluctuation	10%	10%
Pulse intensity fluctuation	10%	1%
Pulse timing jitter (fraction of pulse duration)	10%	10%
Max. vertical emittance outside SPX zone	50 pm	50 pm
Vertical emittance variation outside SPX zone	10%	10%
Rms beam motion outside SPX zone (as fraction of beam size/divergence)	10%	10%

Parameter	Scope Goal	Long Term Goal
RF deflecting voltage	2 MV	4 MV
cryomodules/cavities per cryomodule	2/4	2/8
RF frequency	2815.486 MHz	2815.486 MHz
Cavity tunability	± 200 kHz	± 200 kHz
Source tunability	±1.5 kHz	± 1.5 kHz
Operating temperature	2.0K	2.0K

Parameter	2 MV (Scope Goal) Rms value	4 MV (Long Term Goal) Rms value	Requirement
Common mode voltage amplitude variation	< 1%	<1%	Keep intensity and pulse length variation under 1%rms
Common mode phase variation	<4.0 deg	<4.0 deg	Keep intensity variation under 1%rms
Voltage amplitude mismatch error between sectors	<0.16 %	<0.4%	Keep rms emittance variation outside SPX under 10% of normal 35 pm
Voltage phase mismatch error between sectors	< 0.14 deg	<0.07 deg	Keep rms beam motion outside of SPX under 10% of beam size/divergence

Advanced Photon Source Upgrade (APS-U) project

Sajaev, Borland, Emery, Nassiri, Physics Requirement Document

$$\Delta t_{x-ray} \propto \frac{1}{U_{rf} \sqrt{\beta_{rf}}}$$

Currently used and studied lattice in a proposal for SPX straights sections, $\beta = 5$ m

New proposed lattice (not sufficiently studied) with $\beta = 10$ m or even 15 m. X-ray pulse can be at or under ~ 1 ps using 2 MV¹.

1) V. Sajaev, AOP-TN-2011-012, May 6, 2011