

SPX Project Overview and Status

Ali Nassiri

SPX Study Mini-Workshop

July 18-21, 2011 – Argonne National Laboratory

Outline

- Scope
- Expected performance
- Major challenges
- SPX0
- Highlights and Status

SPX Scope

Scope: 2 MV deflecting voltage, ~2ps (FWHM) x-ray pulses

Long Term Goal: 4 MV deflecting voltage, ~1ps (FWHM) x-ray pulses Requires 8 cavities per sector

¹ A. Zholents et al., NIM A 425, 385 (1999).

Sector 5/7

Expected Performance Parameters*

Parameter	Scope Goal	Long -Term Goal
Pulse duration (central 70% of beam)	2 ps	1 ps
Pulse duration fluctuation	10%	10%
Pulse intensity fluctuation	10%	1%
Pulse timing jitter (fraction of pulse duration)	10%	10%
Max. vertical emittance outside SPX zone	50 pm	50 pm
Vertical emittance variation outside SPX zone	10%	10%
Rms beam motion outside SPX zone (as fraction of beam size/divergence)	10%	10%

Parameter	2 MV Scope Goal Rms value	Driving Requirements
Common mode voltage amplitude variation	1%	Keep intensity and pulse length variation under 1% rms
Common mode phase variation	4.0 deg	Keep intensity variation under 1% rms
Voltage amplitude mismatch error between sectors	1.1%	Keep rms emittance variation outside SPX under 10% of normal 40 pm
Voltage phase mismatch error between sectors	0.18 deg	Keep rms beam motion outside of SPX under 10% of beam size/divergence

Major Technical Challenges

- LOM/HOM dampers
 - Damping materials issues
 - High heat load in LOM
 - Broad-band rf window option
- Precision cavity alignment (100 μm)
 - Can it be relaxed? Implications on other systems
- Meeting vertical compliance of cavities interconnect bellows
 - Low-loss formed bellow vs. shielded bellow
 - Particulate generation of shielded bellows
 - KEK and DAFNE designs
- Achieving 0.18 rms sector-to-sector differential phase spec
- Design and implementation of rf and optical tilt monitors
 - X-band cavity BPM
 - Damping of LOMs and HOMs outside deflecting zone
 - Diamond x-ray fluorescence

SPX0 Goal

- Demonstrate proof of concept
 - System is too complex and untested
 - Learn as much as possible as how will this would work in storage ring
- Identify and mitigate technical risks
 - Risk on operation impacting users
 - Validating LOM/HOM damping with beam
 - Assessing performance
 - Thermal load and mechanical integrity of SiC
 - Safety margin
- Understand all possible operating modes with 2-cavity system
- Assess the effects of operating the cavities detuned
- Assess heating and impedance effects at 80K and 300K
- Test and ring out technical systems
 - LLRF controllers
 - Control of beam offset and cavities vertical misalignment
 - Beam loading and rf power management

Highlights - Cavity

 Mark I cavity tests performed at JLab. It meets rf performance with 10% safety margin on deflecting voltage.

Highlights - Cavity

■ Fabrication and preliminary test of Mark II cavity has been completed at JLab. Mark II cavity reached a surface magnetic field of 120 mT (0.5 MV) with $Q_0 \sim 5 \times 10^8$.

More tests are planned in July.

Highlights - cavity system

- Down selected JLab-style scissor jack tuner scaled to SPX cavity
- Active cavity alignment scheme
 - Mockup test at JLAB promising
- Designed cavity helium vessel that is compatible with both Mark I and Mark II cavities

Highlights - bellows

- Investigation of bellows
 - Shielded bellow (KEK and DAFNE)
 - Formed bellow (shallow convolution, possibly cooled)
- Five bellows will be required for the 4 cavity cryomodule
 - Three interconnect bellows (between cavities)
 - Two warm to cold transition bellows (end cavities)
- Bellows must allow for thermal contraction of the string and active alignment of individual cavities
- Issues are vertical movement compliance and particulate generation
- Plan is being developed to test bellows in the storage ring before SPXO installation.

Highlights - dampers

- 4-wedge HOM damper is broadband to 8 GHz.
- LOM double window uses two WR340 pillbox window assemblies.
- Window assembly transitions from the cavity with an 80mm taper.
- Dampers tests are planed
 - RF and thermal
 - Particulates

Highlights - Conceptual Design Strategy (CDS)

Highlights -CDS: Differential Specs

- Orbit Feedback System provides long-term stability ...
 - via Beam Position Monitor (BPM) Array 2 sets differential phase < 100(200) Hz
 - via Residual Tilt Monitors sets differential amplitude < 100(200) Hz
- LLRF System on its own > 10 Hz
 - 10 Hz 100(200) Hz overlap with Orbit Feedback

BPM Array 2: sets phase of Sector 7

Residual Tilt Monitors: sets amplitude of Sector 7

Highlights - CDS: Common Mode Specs

- Main storage ring rf used to lock beam to master osc. via Beam Arrival Time diagnostic
- SPX follows master oscillator, orbit feedback...
 - via BPM Array 1 sets common mode phase < 100(200) Hz
 - via Intersector Tilt Monitor sets common mode amp < 100(200) Hz
 - LLRF on its own > 10 Hz

BPM Array 1: sets phase of Sector 5
BPM Array 2: sets phase of Sector 7

Intersector Tilt Monitor: sets amplitude of Sector 5 Residual Tilt Monitors: sets amplitude of Sector 7

Beam Arrival Time Monitor: sets phase of Main Storage Ring RF

Highlights CDS: Possible Phase Stable Fiber Distribution

Highlights

- LLRF
 - LBNL Collaboration Phase I (joint with timing/synchronization)
 - Differential stability of two high-Q cavity emulators
 - Production of LLRF4 based controllers to support SPX R&D
 - LBNL Collaboration Phase II
 - Demonstration of timing/synchronization concepts between rf cavity and user laser

Diagnostics

- Will need new types of diagnostics
 - Ongoing R&D on optical, rf tilt monitors, and beam size monitors

Highlights Cryogenics and Cavity/Cryostat test @PHY

- New infrastructure is available
 - New 2.5g/s vacuum pump
 - Crogenics instrumentation
 - New JYHX feedcan and neck insert for a 24" dewar and new transfer lines
 - Vertical tests of single "bare cavity" in modified PHY 24" LHe vessel
 - Single "dressed cavity" V/H tests in modified PHY Tc2 vessel
- A draft technical specifications document for SPX cryoplant has been prepared.

Plan for an early procurement

Cave platform showing 24" dewar with feedbox (left) and cryoplant connection box (lower right)

Timeline

Looking Ahead

- Cavity down select
- Fabrication of 3rd cavity
- Tuner prototyping
- Cavity active alignment
- SiC material test and characterization
- Design and in-ring test of a formed bellow
- Design and testing of a wideband rf window for LOM WG
- Completion of two high-Q emulators test
- Develop diagnostics for SPX0