

SPX Workshop

LLRF R&D

ANL: Tim Berenc, Hengjie Ma, Ned Arnold, Frank Lenkszus

LBNL: Larry Doolittle, Gang Huang, John Byrd

July 18, 2011

Performance Requirements

Common Mode

Differential Mode

Specification name	Rms Value	Driving requirement
Common-mode voltage	< 1%	Keep intensity and pulse
variation		length variation under
		1% rms
Common-mode phase	$< 4.0^{\circ}$	Keep intensity variation
variation		under 1% rms
Voltage mismatch	< 1.1%	Keep rms emittance
between sectors		variation under 10% of
		nominal 40 pm
Phase error between	$< 0.18^{\circ}$	Keep rms beam motion
sectors		under 10% of beam
		size/divergence

Conceptual Design Strategy

- Orbit Feedback System provides long-term stability ... < 100 (200) Hz
- LLRF System on its own > 10 Hz
 - 10 Hz 100(200) Hz overlap with Orbit Feedback

BPM Array 1: sets phase of Sector 5
BPM Array 2: sets phase of Sector 7

Intersector Tilt Monitor: sets amplitude of Sector 5 Residual Tilt Monitors: sets amplitude of Sector 7

Beam Arrival Time Monitor: sets phase of Main Storage Ring RF

Conceptual RF Control Architecture

- Single Klystron per cavity with digital LLRF + Analog Front End
 - Want fast independent control of each cavity
 - Deflecting cavity beam loading is a function of offset and tilt not expected to be the same cavity to cavity or sector to sector (i.e., electrical alignment errors)
 - Microphonics not expected to be common mode, especially between sectors
- Phase Reference, LO (& CLK) distributed centrally to keep phase noise common mode
 - Provisions for both coax-based and LBNL phase stabilized fiber reference
 - Orbit feedback eliminates long-term drift concerns
 - Coax provides superior short-term noise, fiber provides superior long-term noise to alleviate control effort of orbit feedback and is needed for synchronizing user laser
 - Comparison of short-term noise of fiber link vs. coax needs to be measured
- Receiver Chain Drift Compensation via Calibration Tone
- Sector to Sector Control derived from beam-based Feedback
- Beam Arrival Time Feedback to Main Storage Ring RF to lock beam to Master Oscillator

R&D System Concept (1 Sector, 2 cavities)

Strategy #1 - Regulate to a Designated Phase Reference

- Don't let the LO assume the role of the phase reference
- Phase is a Differential Measurement
- Mixers preserve phase information, x's and ÷'s preserve timing
- In theory, common mode LO and clock noise cancels

LLRF4 Board - Input Differential Phase Noise

LLRF4 Board - Output Phase Noise

Analog Front End - Differential Phase Noise

Differential Phase Noise at IF Frequency

Klystron Residual Noise Measurements

Klystron AM Noise Measurements

Strategy #2 - Incorporate CW Drift Compensation^[1]

[1] "Signal Processing for High Precision Phase Measurements", G. Huang, L. Doolittle, J. Staples, R. Wilcox, J. Byrd, Proceedings of BIW10

Demonstration of CW Drift Compensation

$$\Delta\phi_{meas} = (\phi_{cav} - \phi_{ref}) + \Delta\phi_{drift}$$

$$\Delta\phi_{calTone} = \Delta\phi_{drift}$$

$$\Delta\phi_{\scriptscriptstyle correct} = \Delta\phi_{\scriptscriptstyle meas} - \Delta\phi_{\scriptscriptstyle calTone}$$

Single Cavity Testing at ANL scheduled for 2/2012

LLRF4 based system to support LLRF & Timing R&D

2 LLRF4 boards presently at ANL

10/2011:

- LBNL delivery of 1st LLRF4 system for LLRF
- Report on differential stability study between 2 high Q cavity emulator systems

Delivery anticipated 1/2012

Then, we need to demonstrate that we can achieve the differential specs between 2 cavities

How to achieve 0.18° rms Differential Phase ??

- Digital LLRF receiver noise floors show capability at least > 1Hz
- Beam-based feedback strategy planned for < 100(200) Hz
- LBNL drift compensation schemes provide long term stability
- We need to explore cavity system noise performance through R&D
 - microphonics, beam-loading disturbances & cavity alignment, sources of common mode to differential mode conversion, AM-to-PM conversion
- We also need to study anticipated interaction with orbit feedback and influence of bunch by bunch feedback on betatron tune Q

Very Simplistic First Order Orbit Feedback concept

Update on Common Mode Phase Considerations

- 4.0° rms = ~4 psec rms common mode spec
 - Storage Ring beam jitter:
 - Initial diagnostic studies show ~2.7 psec rms beam jitter
 - Beam physics simulations based upon rf measurements of AM and PM noise resulted in 1.7 psec rms
 - Extensive studies of main 352 MHz rf system noise have been taking place (APSU_1417419, APSU_1416636, APSU_1416055, APS_1414611)
 - Planning on beam arrival time feedback to main 352 MHz to lock beam to M.O.

Update on Common Mode Phase Considerations

Have recently experimented with 360Hz Feed-Forward correction of Storage Ring Klystron High-Voltage Power Supply (HVPS) induced noise

Update on Common Mode Phase Considerations

Have recently experimented with 360Hz Feed-Forward correction of Storage Ring Klystron High-Voltage Power Supply (HVPS) induced noise

Summary

- LLRF4 2-Channel measured phase noise floor ~ -135 dBrad²/Hz
- Calibration Tone scheme provides phase drift compensation
 - Need to be careful with signal levels in order not to reduce SNR
 - Anticipated ability to capture phase noise of Analog Front End, more to explore
- LBNL delivery of first LLRF4 receiver to ANL and differential noise study: 10/11
- Single cavity testing at ANL scheduled to begin 2/2012
- Two cavity system to be explored through SPX-0 R&D program
- Storage Ring performance studies well underway

Possible topics to discuss

- beam-loading disturbances & cavity alignment, potential sources of common mode to differential mode conversion, microphonics, Lorentz force detuning
- interaction with orbit feedback and influence of bunch by bunch feedback on betatron tune Q

Backup Slides

Deflecting Cavity Beam Loading

$$P_g^+ = \frac{V_t^2}{8\beta (R/Q)'Q_o} \cdot \left[\left(\beta + 1 + \frac{P_B}{P_{cav}}\right)^2 + \left(2Q_o \frac{(M+\delta f_m)}{f_r} + \frac{P_B}{P_{cav}} \tan \phi_s\right)^2 \right]$$

Very Simplistic First Order Orbit Feedback concept

Assume:
$$G_{FB}(s) = \frac{K_p^{RTFB} \sigma_{RTFB}}{s}$$

$$N_{FB}(s) = \frac{\phi_{cav}(s)}{\phi_{\text{det noise}}(s)} = \frac{C(s)G_{qq}^{GN}(s)}{1 + C(s)G_{qq}^{GN}(s)[1 + G_{FB}(s)]}$$

$$= \frac{K_p \sigma_{cav} s}{s^2 + K_p \sigma_{cav} s + K_p^{RTFB} K_p \sigma_{RTFB} \sigma_{cav}}$$

How to achieve 0.18° rms Differential Phase ??

July 2011 SPX Workshop