

Frank Lenkszus

Outline

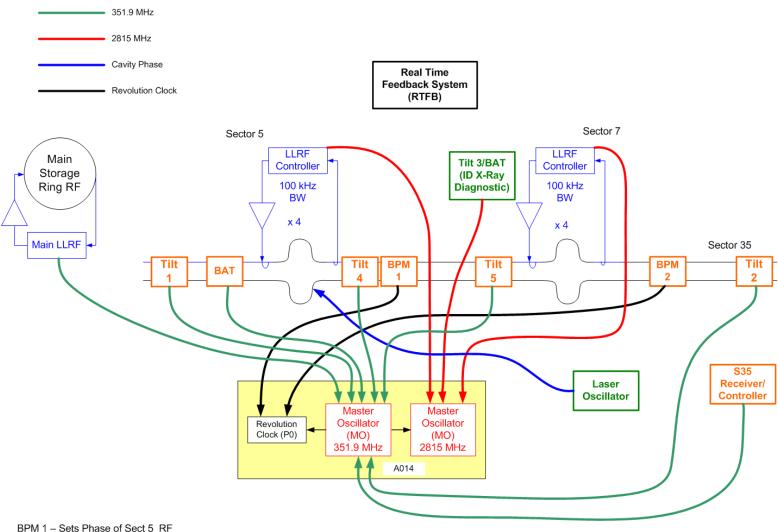
- Background
- Design Goals and Performance Requirements
- Technical Challenges
- Conceptual Design Approach
- R&D approach
- Summary

Team

- Timing/Synchronization
 - Frank Lenkszus Lead Engineer
 - Tony Scaminaci FPGA Engineer
- LLRF
 - Tim Berenc Lead Engineer
 - Hengjie Ma LLRF Engineer
- Controls
 - Ned Arnold
- LBNL Collaborators
 - John Byrd
 - Larry Doolittle
 - Gang Huang

Background

- SPX Technical Study Meeting July 2010
 - WG2: LLRF/Timing/Synchronization/Diagnostics/Controls
- Timing/Synchronization WG Meeting Dec 2010
- Meeting with John Byrd of LBNL Jan 2011
- SPX Review March 2011
- Lehman Review May 2011
- Weekly Skype meetings with LBNL group
 - John Byrd
 - Larry Doolittle
 - Gang Haung
 - Tim Berenc
 - Frank Lenkszus
 - Ned Arnold
 - Hengjie Ma

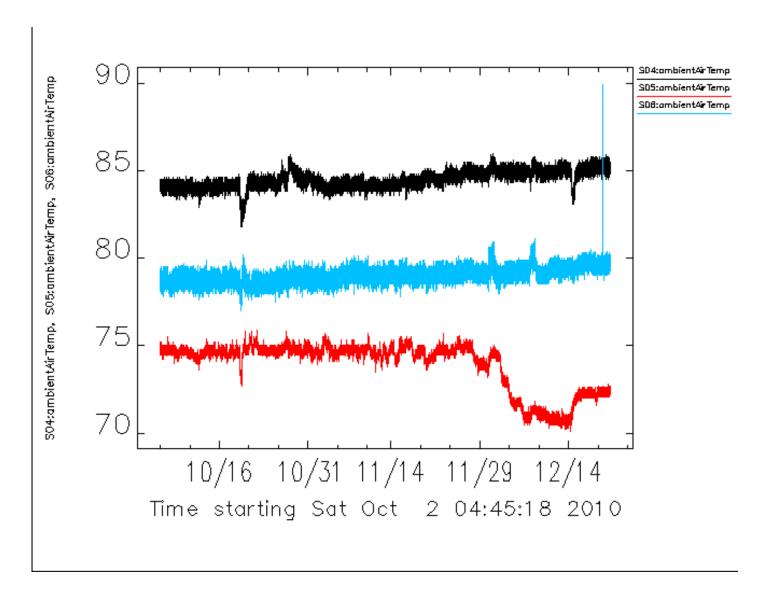

Cavity Field Specifications

Specification name	Rms Value	Driving requirement		
Common-mode voltage	< 1%	Keep intensity and pulse		
variation		length variation under		
		1% rms		
Common-mode phase	< 4.0°	Keep intensity variation		
variation		under 1% rms		
Voltage mismatch	< 1.1%	Keep rms emittance		
between cavities		variation under 10% of		
		nominal 40 pm		
	< 0.18°	Keep rms beam motion		
Phase error between		under 10% of beam		
cavities		size/divergence		

Timing/Synchronization Requirements per Device

		F in MHz	Reference With respect to What	Stability (rms) (< 10 Hz)	Interval	Phase Noise (>10 Hz)	System Response BW	P0 (rev clock)	Note
Beam Arrival Time Monitor	Ref	2815	352 Mo	< 1 ps	7 Days?	TBD	3kHz	Yes	Short Copper <10m
RF Beam Tilt Monitor (Residual)	Ref	11260	352 Mo	< 1ps	7 Days	TBD	3kHz	Yes	Short Copper <10m
RF Beam Tilt Monitor (Residual)	ADC Clock	TBD		TBD	TBD	TBD	TBD		
X-Ray Tilt Monitor	Ref	2815	2815 Ref	2 ps	7 Days	TBD	1Hz		ID & BM Relative measurement between array elements
X-Ray BAT	Ref	2815	2815 Ref	250fs	7 Days	TBD	1Hz		ID & BM (BAT monitor uses same sensor as tilt monitor)
Laser(s)	Ref	Various	2815 US cavity zero crossing + x-ray arrival time	<100 fsec	7 Days?	TBD	1Hz	Yes	
Laser(s)	Rev Clk	272 kHz							
S35	Ref	2815	352 Mo	<4.8 psec	7 Days?	TBD	0.1Hz		
RF BPMs	Rev Clk	272 kHz						Yes	

Device Phase Reference Sources

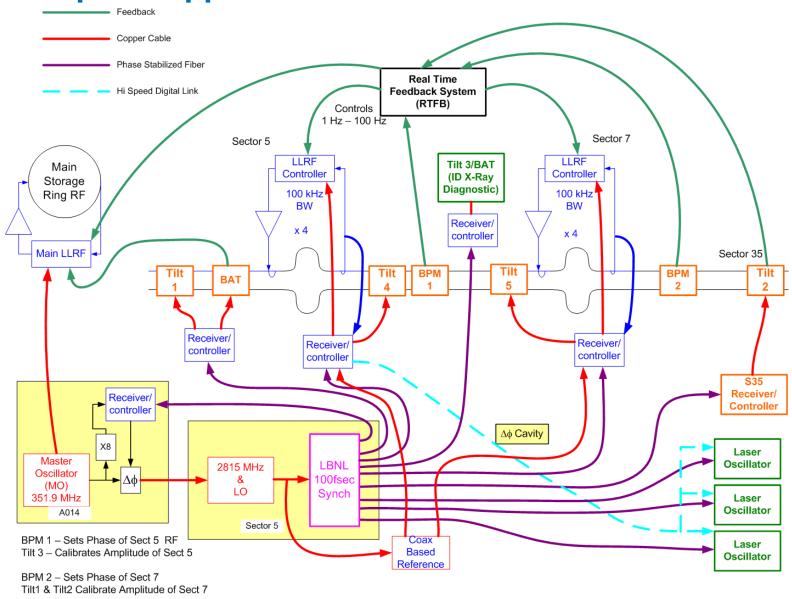


Tilt 3 – Calibrates Amplitude of Sect 5

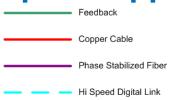
BPM 2 – Sets Phase of Sect 7
Tilt1 & Tilt2 Calibrate Amplitude of Sect 7

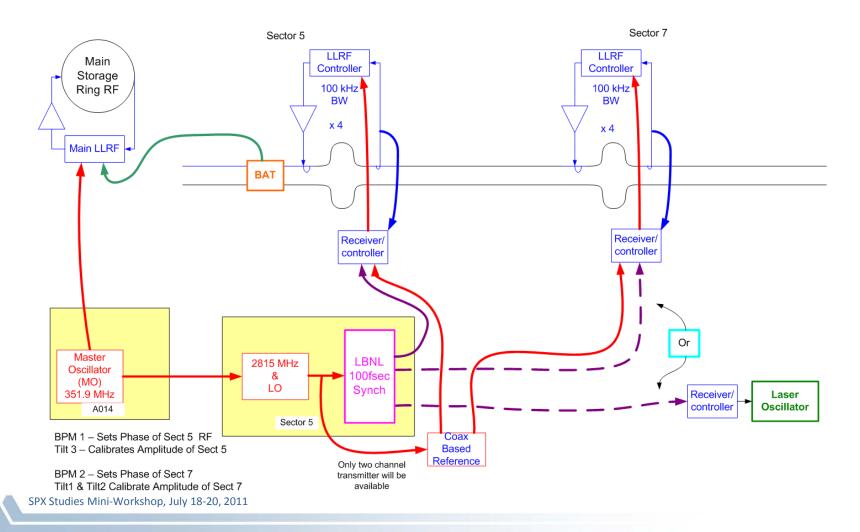
SPX Studies Mini-Workshop, July 18-20, 2011

Ambient Temperature: SR S4, S5, S6


The Problem

- One Meter of Fiber Optic cable with
 - 7 ppm/degC
 - V/C = 67%
- Result: ~50 femtoseconds/degC
- 5 Meters of Phase Stabilized Coax Cable
 - 3 ppm/degC
 - V/C = 90%
- Result: ~56 femtoseconds/degC


Conceptual Design Approach


- Use the LBNL developed Femtosecond –Phase Stabilization Scheme to lock the beam-line pump laser(s) to the upstream SPX deflecting cavity phase.
- Use beam based feedback to compensate for "slow" drifts (<100 Hz)
 - BPMs within SPX zone correct upstream SPX cavity phase
 - BPMs outside SPX zone correct downstream SPX cavity phase
- Distribute common phase reference to up and down stream sector LLRF to keep phase noise common mode
 - Provide for both coax and LBNL stabilized fiber phase references
 - Coax provides better short-term noise
 - Stabilized fiber provides better long term noise (stability)
 - Reduces control effort required of beam-based feedback

Conceptual Approach Production

Conceptual Approach R&D

Summary

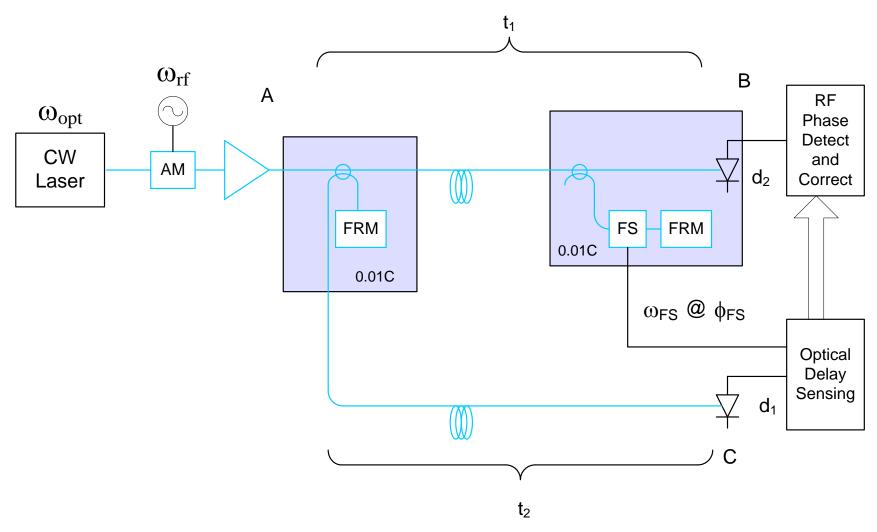
- Timing/synchronization requirements determined for cavity field and beam diagnostics
- LBNL femtosecond phase reference distribution
 - Collaboration with LBNL
 - Two channel system for in-ring testing
 - Borrowed LBNL transmitter
- Beam based feedback to compensate for long term drifts

Additional Slides

Beam-Line Lasers

- High-peak-power Ti:Sapphire
 - Pulse Duration: 50 fs
 - Repetition rate: 1 10 kHz
- High Power, sub-cycle THz source
 - Pulse Duration: < 1 ps
 - Repetition rate: 1- 10 kHz
- Tuneable UV to mid-IR Source
 - Pulse Duration: < 100 fs
 - Repetition Rate: 1 10 kHz
- High Repetition-Rate, High Average Power fiber laser system
 - Pulse Duration: < 200 fs
 - Repetition Rate: 6.5 MHz

Ref: CDR 4.2.2.6


The LBNL Femtosecond-Phase Stabilization System

- Uses frequency offset in the optical domain
 - Optical frequency is offset by an RF frequency (110 MHz)
 - Offers a large leverage over stabilization in the RF domain (six-orderof-magnitude)
- The frequency offset process is equivalent to a heterodyning process
 - Heterodyne (mix) original optical frequency with the offset optical frequency
 - Changes in optical phase translate to identical changes in the 110 MHz beat signal
 - One degree of phase change in the 1530 nm optical domain translates to 1 degree of phase change in the RF domain. ~ 21 attoseconds

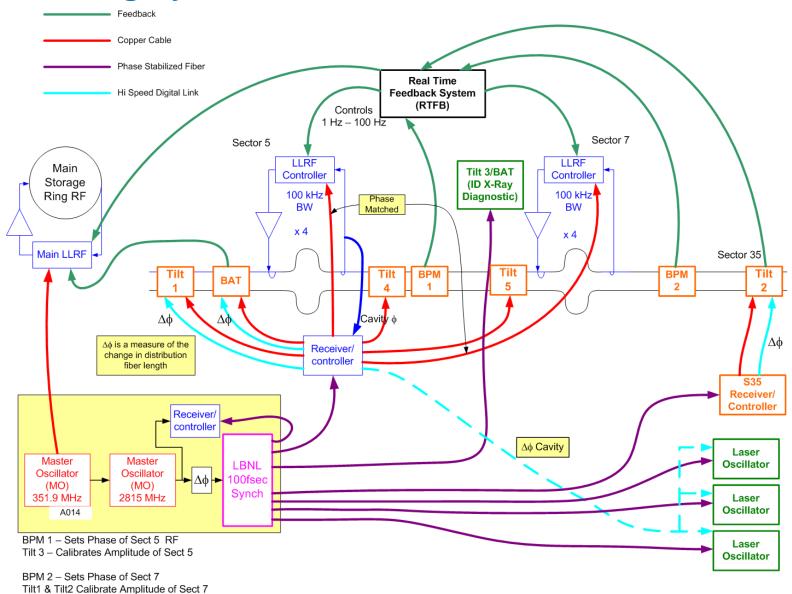
"Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber", J. Staples, R. Wilcox, J. Byrd, LBNL, Proceedings of PAC07 (MOPAS028)

LBNL Scheme for stable transmission of RF signals

Reference: "Stable transmission of radio frequency signals on fiber links using interferometric delay sensing", R. Wilcox, J. Byrd, L. Doolittle, G Huang, J. Staples, Optics Letters, Vol 34, No. 20, pp 3050-3052 (Oct 15, 2009)

LBNL Results

- 2.2 km fiber
 - 19.4 fs rms @ 2850 MHz (60 hours)
- 200 m fiber
 - 8.4 fs rms @ 2850 MHz (20 hours)


Reference: "Stable transmission of radio frequency signals on fiber links using interferometric delay sensing", R. Wilcox, J. Byrd, L. Doolittle, G Huang, J. Staples, Optics Letters, Vol 34, No. 20, pp 3050-3052 (Oct 15, 2009)

Notes on the LBNL System

- CW laser used in the interferometer must have a fractional frequency stability less than the desired fractional temporal stability.
 - For 10 femtosecond stability
 - 2 km link $\Delta \lambda / \lambda = 1 \times 10^{-9}$
 - 500 m link $\Delta \lambda / \lambda = 4 \times 10^{-9}$
 - CW laser frequency is locked to a hyperfine absorption line in Rb vapor
 - May be able to use an acetylene line lower cost
- Method stabilizes the phase velocity of the optical frequency
 - Apply a fixed correction factor to correct group velocity.
- AM/PM conversion in photo diode must be minimized
 - Operate photo diode at power level to minimize AM/PM conversion if possible
- Critical rf and optical components are temperature stabilized to +/- 0.01
 °C
- RF mixers and amplifiers are stabilized to +/- 0.1 °C
- No optical delay line needed
- Links need to be recalibrated after a power cycle.

SPX Timing/Synchronization Distribution

Advanced Photon Source Upgrade (APS-U) project SPX Review , March 3-4 2011

Notes

- Fiber Transmitter/Modulator stabilized by feedback
 - Use one fiber splitter output for feedback to control phase shifter on transmitter modulator input
- SPX Upstream cavity phase measured and distributed digitally to Laser receiver controllers to correct for cavity phase shifts