

APS Seminar 10/08/2013

KNOT-APPLE UNDULATOR TO REDUCE ON-AXIS POWER DENSITY

DESIGN OF A KNOT-APPLE UNDULATOR FOR SSRF

Shigemi Sasaki
Hiroshima Synchrotron Radiation Center
Hiroshima University

- Motivation of consideration
- ◆ Knot-undulator to Knot-APPLE undulator
- Magnetic structures
- Expected performance
- Other possible structures with better performance
- Summary

Motivation of consideration

Unreasonable demand by SR users

"We need lower photon energy at a beamline of high energy SR facility."

Pioneer: Aimed at 250 eV photon generation from 8 GeV ring

SPring-8 — Figure-8 Undulator

T. Tanaka and H. Kitamura, Nucl. Instrum. Meth. A364, 368 (1995).

Motivation of consideration (cont.)

Similar to the Figure-8, we got an idea for reducing on-axis power density more efficiently. PERA (in Trieste, 1997, EPAC98 Proc.)

$$B_x = -B_{x0} \sin(2\pi z / \lambda_x),$$

$$B_y = B_{y0} \left\{ \frac{1}{2} \cos(2\pi z / \lambda_{y1}) + \frac{3}{2} \cos(2\pi z / \lambda_{y2}) \right\},$$

Here,
$$\lambda_{y1}=2\lambda_x$$
 and $\lambda_{y2}=2\lambda_x/3$.

Motivation of consideration (cont.)

S. Qiao, et al, Rev. Sci. Instrum. 80, 085108 (2009) No real magnetic structure is proposed.

Motivation of consideration (cont.)

More recent "impossible" demand by users

Need

Variable polarization and small on-axis power density for all polarization states

7-70 eV photon beam from 3.5 GeV ring at SSRF by Shan Qiao

APPLE-8 or Knot-APPLE

New SR source in China

SSRF, Shanghai Synchrotron Radiation Facility
 3.5 GeV 300 mA

Platform for electronic structure study

The largest budget of NSFC

~ 27 M\$, unconfirmed

1个大气压

Purpose of VUV Beamline at SSRF

- Photoemission spectroscopy (PES)
- 7-100 eV, for high energy and angular resolution

Their problem

- SSRF Storage Ring: 3.5 GeV
- High K-value
- Intense higher order harmonics cause extremely high heat load

APPLE-8 undulator

S. Sasaki, "Undulators, wigglers and their applications," pp.237-243 (Ed. by H. Onuki and P. Elleaume, Taylor & Francis Inc., New York, 2003).

APPLE-8 problem

Their opinion

Knot-Undulator

SSRF: E=3.5 GeV, I=200 mA, ε_0 =11.2 nmrad

PL≥99%

kick angle spatial flux density

APPLE-II Undulator

Schematic view of the magnetic structure for generating variably polarized undulator radiation. $D=\lambda_u/4$.

Radiation from APPLE II undulators

Knot-APPLE

D=65 mm, parallel

D=110 mm, antiparallel

(D: magnet row phase)

Knot-APPLE field

D=65 mm, parallel

D=110 mm, antiparallel

Knot-APPLE: kick angle

D=65 mm, parallel circular

D=110 mm, antiparallel vertical linear

Knot-APPLE: SFD

D=65 mm, parallel circular

D=110 mm, antiparallel vertical linear

Knot-APPLE: Other structure options

Top View; D=0 mm

Magnetic Field and Kick Angle

Knot-APPLE Structure: Option 2

Rui Chang and Shan Qiao (SIM, CAS)

Phase=0, Gap=22 mm

P=99.8%

Phase= $\pm\pi$ (antiparallel), Gap=18 mm

P=-96.7%

Circularly Polarized

 $P_c = 99.8\%$

Linearly Polarized around 45°

Summary

The Knot-APPLE undulator is proposed. It is capable to vary polarization states with low on-axis power density at every polarization mode.

In a 3 GeV class light source ring, a long period (λ_u > 200 mm) undulator having a high K-value (~ 10) is required to generate ~ 10 eV photon beam.

This Knot-APPLE undulator scheme is one of the powerful solutions.

References

- T. Tanaka and H. Kitamura, Nucl. Instrum. Meth.
 A364, 368 (1995).
- S. Sasaki, "Undulators, wigglers and their applications," pp.237-243 (Ed. by H. Onuki and P. Elleaume, Taylor & Francis Inc., New York, 2003).
- S. Qiao, et. al, Rev. Sci. Instrum., 80, 085108 (2009).
- J. Yan and S. Qiao, Rev. Sci. Instrum, 81, 056101 (2010).