

# (Resonant) Inelastic X-ray Scattering at the APS:

The New RIXS Beamline 27-ID and The Improved HERIX Beamline 30-ID

Thomas Gog
Advanced Photon Source
Inelastic X-ray and Nuclear Resonant Scattering Group

APS-U Forum 29 January 2015



# Acknowledgements

Many Thanks to

Sector 27/30 staff: Rick Krakora, Tim Roberts, Diego Casa, Mary Upton, Jungho Kim, Yang Ding,

Ayman Said, Ahmet Alatas, Bogdan Leu, Becky Forsythe and the rest of XSD-IXN

Upgrade Management: Dean Haeffner, Mohan Ramanathan, Marion White, Julie Cross

XSD Management: Jonathan Lang, Mark Beno, Linda Young

Undulators: Roger Dejus, John Grimmer, Louis Emery

AES-SI: Greg Banks, Greg Markovich

AES-MED: Jason Carter, Bran Brajuskovic, Oliver Schmidt

AES-Survey: Scott Wesling, Scott Petersen

AES-User support: Shane Flood and everybody

AES- MOM: Ed Theres, Dan Burke, Glenn Moonier and everybody

AES-Vacuum: Tri Ling Kruy, Mark Martens, Jack Burke, Raul Mascote and everybody

AES-Site Ops: John Sidarous, George Doktorczyk, Andy Stevens

AES-BCDA: Jeff Kirchman, Joe Sulllivan, Kurt Goetze and everybody

AES-IT: Fred Carter, Danny DeVito,

And plenty more ...



# Why Inelastic X-ray Scattering?



- Goal: Understanding Material Properties => Devices
- Need to understand both

**Statics** (crystal structure, magnetic structure, ...)

**Dynamics** (lattice vibrations, electronic excitations,

magnetic interactions, ...)

Examples: Giant Magneto-Resistance,

Superconductivity

Inelastic X-ray Scattering (RIXS, IXS, HERIX, LERIX, ...)

Elastic X-ray Scattering, Diffraction



# How is an IXS measurement done? (HERIX 30-ID, lattice vibrations)







# New Short-Period Undulators at 30-ID (Oct. 2014)

- High-resolution inelastic spectroscopy is extremely photon-hungry.
- Replacement of 30mm undulators by new, short-period 17.2mm devices doubles the incident flux, substantially improves flux density, beam divergence and stability for the HERIX instrument @ 23.7 keV
- Immediate, significant impact on user operation at 30-ID
- Doubling the incident flux enables users to obtain publishable data sets within as little as one visit to the APS, instead of multiple visits.

HERIX spectra featured in a recent publication (Budai et al., Nature 515, 535 (2014)) on the nature of the Metal-Insulator transition in Vanadium Dioxide ( $VO_2$ )

(**red curve**) before, (**blue curve**) after implementation of the new undulators.

John Budai: "Measurements needed for the Nature paper required two visits of 6 days each, that were separated by one year due to high demand for beamtime. These measurements can now be obtained in a single 6 day run."



# Why do we need R(esonant)IXS?

#### **Scattering Cross Section**

for **lattice vibrations (phonons)**: small, but practical (HERIX)

for **electrons**: much, much smaller

(... and a lot of the interesting novel phenomena in materials are dominated by correlated electron systems ...)



# Why do we need RIXS?

#### **Scattering Cross Section**

$$\frac{d^{2}\sigma}{d\Omega d\omega} \propto \left| \langle f \mid H_{int} \mid i \rangle + \sum_{|n\rangle} \frac{\langle f \mid H_{int} \mid n \rangle \langle n \mid H_{int} \mid i \rangle}{E_{i} - E_{n} + i\Gamma} \right|^{2}$$





#### X-ray Optics:

Choose suitable parameters

- Energy resolution
  - Throughput



- Incident energy E<sub>i</sub>



Resonant Enhancement (x 50...100)

#### X-ray Optics (RIXS):

Incident energy E<sub>i</sub> predetermined (...and different for every material)



Find "Best" optics (monochromator and analyzer) for every E<sub>i</sub> of interest



#### **RIXS Science**

#### **Scattering Cross Section**

$$\frac{d^2\sigma}{d\Omega d\omega} \propto \left| \langle f \mid H_{\text{int}} \mid i \rangle + \sum_{|n\rangle} \frac{\langle f \mid H_{\text{int}} \mid n \rangle \langle n \mid H_{\text{int}} \mid i \rangle}{E_i - E_n + i\Gamma} \right|^2$$



#### Non-Resonant (weak)



d<sub>hkl</sub> only discrete values!



Resonant Enhancement (x 50...100)

### X-ray Optics (RIXS):

- High Energy Resolution:Bragg (near-) Backscattering



- It is what it is !

#### **RIXS Science**

#### **Scattering Cross Section**

$$\frac{d^2\sigma}{d\Omega d\omega} \propto \left| \langle f \mid H_{\text{int}} \mid i \rangle + \sum_{|n\rangle} \frac{\langle f \mid H_{\text{int}} \mid n \rangle \langle n \mid H_{\text{int}} \mid i \rangle}{E_i - E_n + i\Gamma} \right|^2$$





Non-Resonant (weak)

**Energy resolution:** 

1meV routine

< 1meV getting there

Resonant Enhancement (x 50...100)

**RIXS** Energy resolution:

~100 meV mid-2000

25 meV @ Ir-L3 in 2010

< 20 meV for many E<sub>i</sub> new spherical analyzer materials

< 10 meV flat crystal optics



# RIXS Analyzer R&D and Energy Resolution



E ~5-23 KeV





#### **APS-U Construction Status of 27-ID RIXS**

- Basic beamline construction was finished, on time and on budget by Dec 2014.
- All RIXS instrumentation and infrastructure operational by Dec 2014.
- Further commissioning during 2015-1
   (high-P/low-T sample environment, new 25 μm strip detector, new spherical analyzers, ...)
- Start of GU program in May 2015



First RIXS measurements on Iridium compounds demonstrate beamline performance



- Energy resolution measurements show improvement due to improved focusing
- Previously initiated diffuse magnetic scattering study on honey-comb structured Na<sub>2</sub>IrO<sub>3</sub> completed at 27-ID, (submitted to Nature Physics), showing novel bond-directional magnetic



#### **RIXS Science**

#### **5d-Transition Metal Oxides and High T<sub>c</sub> - Superconductivity**

- High T<sub>c</sub>: discovered mid-1980s in cuprates (~140K)
- Mechanism? Room-temperature Superconductor?
- Strategy: Find material similar to cuprates
- Identified Sr<sub>2</sub>IrO<sub>4</sub> as candidate material, but:
- Contains heavy element with large spin-orbit coupling =>
- Magnetic Properties vastly different ?
- Typically: Use Inelastic Neutron Scattering (INS) to check, but :
- No large enough Crystals available, Ir good neutron absorber





# RIXS Science Example (cont.)

- RIXS: until recently not enough Energy Resolution (>~100 meV)
- Breakthrough: ~30 meV RIXS instrumentation for Iridates



Dispersion (top)
Intensity (bottom)
of Spin Wave in
La<sub>2</sub>CuO<sub>4</sub> (INS)
Sr<sub>2</sub>IrO<sub>4</sub> (RIXS)

N.S. Headings, et al. Phys. Rev. Lett. **105**, 247001 (2010) Jungho Kim, et al. Phys. Rev. Lett. **108**, 177003 (2012)

- Spin Wave behavior virtually identical =>
- Sr<sub>2</sub>IrO<sub>4</sub> might superconduct when doped with carriers

# RIXS Science Example (cont.)

- If Sr<sub>2</sub>IrO<sub>4</sub> does not superconduct
   => Refinement of High T<sub>c</sub> Model
- Next Steps:

study doped samples when available, with even better energy resolution

# RIXS Analyzer R&D and Energy Resolution

- Complete in-house fabrication and expertise
- Si, Ge highly symmetric → restricted choices of reflections
- New materials: Sapphire, LiNbO<sub>3</sub>, Quartz





# RIXS Upgrade: Energy Resolution: Reflections

#### Compilation of viable Reflections in Si, Ge, Sapphire, LiNbO<sub>3</sub>, Quartz

www.aps.anl.gov/Sectors/Sector30/AnalyzerAtlas/Analyzer Atlas.html





# RIXS Upgrade: Energy Resolution: Reflections

#### Compilation of viable Reflections in Si, Ge, Sapphire, LiNbO<sub>3</sub>, Quartz

• www.aps.anl.gov/Sectors/Sector30/AnalyzerAtlas/Analyzer Atlas.html

| ps. <b>anl.gov</b> /Sectors/Sector30/AnalyzerAtlas/AnalyzerAtlas.html |                                                                               |                                               |                                   |                                  | 😭 ⊽ 🗷 🚰 - Google             |                                      |                                  |                                |                                  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|------------------------------|--------------------------------------|----------------------------------|--------------------------------|----------------------------------|
| Argo                                                                  | Argonne Advanced Photon Source AU.S. Department of Energy, Office of Science, |                                               |                                   |                                  |                              | U.S. DEPARTMENT OF Office of Science |                                  |                                |                                  |
| Ei =<br>Cryst                                                         | 8.9805<br>Refl<br>(h,k,l)                                                     | keV<br>EB<br>[keV]                            | <b>ΘB</b><br>[°]                  | ∫IR dΘ<br>[μrad]                 | Width<br>[µrad]              | Ei cotΘ<br>[meV/μrad]                | ΔE<br>[meV]                      | ΔEg<br>2m, 50μm<br>[meV]       | ΔEt<br>2m, 50μm<br>[meV]         |
| Ge<br>Ge<br>Si<br>Si                                                  | (3,3,7)<br>(0,0,8)<br>(2,4,6)<br>(1,3,7)<br>Equiv. Refl.                      | 8.969<br>8.766<br>8.542<br>8.768<br>: (3,5,5) | 87.14<br>77.46<br>72.02<br>77.5   | 80.2<br>30.3<br>13.1<br>11.8     | 81.5<br>28.2<br>11.5<br>10.8 | 0.448<br>1.998<br>2.915<br>1.991     | 36.51<br>56.34<br>33.48<br>21.56 | 5.6<br>24.97<br>36.44<br>24.89 | 36.94<br>61.62<br>49.48<br>32.93 |
| LiNbO3                                                                | (1,5,-10)                                                                     | 8.941                                         | <b>84.6</b><br>(6,-5,-10), (-     | <b>58.1</b><br>1,6,-10), (-5,-1, | 55.8<br>,-10), (-6,1,-1      | 0.85<br>10)                          | 47.45                            | 10.62                          | 48.62                            |
| LiNbO3                                                                |                                                                               | <b>8.941</b> : (5,1,10), (6                   | <b>84.6</b> 5,-1,10), (-1,-       | <b>56.4</b> 5,10), (-5,6,10)     | <b>55.8</b> ), (-6,5,10)     | 0.85                                 | 47.45                            | 10.62                          | 48.62                            |
| Quartz                                                                | (-4,6,4)<br>Equiv. Refl.                                                      | 8.972<br>: (-4,-2,-4)                         | 87.44                             | 37.5                             | 34.4                         | 0.401                                | 13.78                            | 5.01                           | 14.66                            |
| Quartz                                                                | (6,-2,4)<br>Equiv. Refl.                                                      | 8.972<br>: (6,-4,-4), (-                      | <b>87.44</b><br>·2,6,-4), (-2,-   | 37. <b>4</b><br>4,4)             | 34.4                         | 0.401                                | 13.77                            | 5.01                           | 14.65                            |
| Quartz<br>Quartz                                                      | (4,-6,-4)<br>(2,4,-4)<br>Equiv. Refl.                                         | 8.972<br>8.972<br>: (2,-6,4), (4              | 87.44<br>87.44<br>,2,4), (-6,2,-4 | 36.3<br>36.2<br>4), (-6,4,4)     | 34.4<br>34.4                 | 0.401<br>0.401                       | 13.78<br>13.77                   | 5.01<br>5.01                   | 14.66<br>14.66                   |
| Ouartz                                                                | (624)                                                                         | 8.972                                         | 87.44                             | 28.5                             | 26.9                         | 0.401                                | 10.79                            | 5.01                           | 11.89                            |

# Summary

- HERIX: Doubling of flux -> immediate positive impact on user operation and science
- RIXS: Vibrant Science Program, currently focused on 5-d TMOs, Iridates
- Consolidation of RIXS on one optimized, dedicated ID beamline
- Improvement of Energy Resolution to 10 meV ... 20 meV, and better
   CRITICAL!
  - Spherical Analyzers
  - Flat Crystal Optics
- Critical Enabling Technology: Sapphire, LiNbO<sub>3</sub>, Quartz Spherical Analyzers
- In-situ Sample Environments

# MBA Perspectives for IXS

Improved brilliance of MBA machine will allow nano-scale focusing

- RIXS: Improvement of energy resolution
- > IXS: Enables study of thin-films, samples under high-pressure
- Very small samples (femtomole science)
- Imaging of inelastic texture

Coherence?

# Nano Hard-Xray Resonant Inelastic Scattering (RIXS)

- Electronic and magnetic excitations in transition metal oxides and other novel materials can now be probed with RIXS with unprecedented energy resolution
- DLSR sources, providing nanoscale beams, will further enable RIXS measurements mapping the intrinsic electronic and magnetic texture in a sample.



