High Repetition Rate Laser/Timing System for Time-Resolved XAFS Measurements at PNC-CAT

Dale L. Brewe

Ed Stern, Ken Beck, Steve Heald, Julie Cross, Yejun Feng

Thanks for E.E. Alp for the use of one of his APD/preamps

Key Characteristics of System

- Laser triggers at P0 (272kHz) rate w/ $\sim 4\mu J$ / pulse
- High triggering rate allows us to use every bunch at our desired relative timing for greatly improved x-ray flux over typical laser systems (1kHz?).
- X-ray microbeam plus laser focusing provides large laser flux density from relatively small pulse energy and information about laser interaction on a small scale.

Laser Specifications

- Coherent Laser Systems Mira 900F 88MHz modelocked seed laser
- Coherent RegA 9000 regen amplifier
- Coherent Synchro-Lock controller for sync to ring
- RegA fires @ 272kHz (i.e. P0 freq.)
- $\sim 4\mu J/\text{pulse}$ ($\sim 1 \text{W avg output}$).
- 200-300fs pulse width
- 800nm wavelength (soon we will have a frequency doubler for 400nm)

Experiment Schematic Diagram

Experiment in Progress

Time-resolved XAFS of Laser-melted Germanium on a microscale

• Objective: Study kinetics of Germanium melting process on thermal-melting time scales

Timing System Overview

- Synchro-Lock takes 88MHz RF reference from ring (352MHz/4) to sync Mira to ring
- Delayed P0 signal triggers RegA
- Timing changes are made by shifting phase of RF reference and/or changing RegA trigger delay to pick up different seed pulse
- Delayed P0 signals trigger linear gates for fast detector pulses (plastic detector for fluorescence signal, APD for I0)
- Gated detector pulses go to counting electronics

Counting Electronics

- So far, pulse counting w/ single discriminator for each detector limited to < 272kHz even w/ correction for pulse pileup
- Next step: Lock-in using P0 as reference input frequency. Initial tests show we get ~ several mV signal.

Sample Setup

EXAFS Results

