The digital monochromator stabilization system SIS 2900

By Klaus Attenkofer (BESSRC)

Introduction: The Feed-Back-System

- Constant Transmission?
- Why digital Mostab?

The Monochromator The Effect of Detuning

- Detuning is shifting the energy (range of 0.1eV)
- Detuning is changing the beam position (vertical)
- Detuning is suppressing the higher harmonic contribution

The Detector: What is Constant?

• Three Modes:

Total Intensity: "Constant energy mode" Intensity after slit: "Constant beam position" Maximal Intensity

The Time Constant of the System

- Sources of Noise:
 - Ground loop
 - Mechanical resonances (20Hz-1KHz)
 - Microphony......

Why Digital Mostab: Energy Scan

With feed-back (I/I0=const)

- Transmission is energy dependent: T(E)
- I/I0 must be corrected: I/I0*T(E)
- Can be corrected only by a digital Mostab

The Functionality of the Mostab

First step:

0.8 - 0.6 - 0.4 - 0.2 - 0.0 -10 0 10 20 θ - θ _Bragg[arc sec]

Second step:

- First Step: determination of the peak position
- Second Step: feed-back on one value

Conclusion or "how to setup a Mostab"

- What kind of Stabilization is needed:
 - Constant energy, Constant beam position, maximum intensity
- Defining the required time constant of the feed-back system
- Frequency analysis of the beamline
- Removing the sources of noise!!!!!
- Adjusting the PID-parameters