Toys & Tools

X-ray Cameras

Large -- Small

Expensive -- Cheap

Applications

- High-resolution Imaging (e.g. radiography)
- Diagnostics (e.g. beam profile analysis)

Design Criteria

- Wavelength (X-ray, VIS, IR)
- Size
- Versatility

The bottom line: cost & efforts vs. usage

• Low-end: \$300 Video camera with lens and posphor

\$400 Color monitor

• High-end: \$\$\$ Research grade CCD camera

\$\$ Computer imaging system

BioCARS beam diagnostics camera

Camera \$ 130 Ce:YAG crystal \$ 130 TV Monitor \$ 450

Field of View 640 x 480 pxl 3.6 x 2.7 mm²

Resolution $\sim 6 \mu m$

GSE-CARS X-ray imaging systems

System components:

- YAG crystals 500μm or 5 μm
- mirror to get CCD out of direct beam
- Mitutoyo long working distance objectives (5x, 10x, 20x, 50x)
- Cameras:
 - Roper Scientific PentaMax and MicroMax
 5 MHz, 6 frames/sec at 650x510 pxl resolution
 exposure times <1 msec to >60 sec
 12 bit ADC, excellent signal/noise ratio
 - Video cameras (cheap, fast)

Top: Imaging system with Roper Scientific

PentaMAX

Left: Detail view of YAG crystal and mirror

Applications

- Microtomography
- Imaging of samples in the multi-anvil press
- Diagnostics for Kirkpatrick-Baez mirror alignment and focusing (both large and small mirror systems)
- Diffractometer alignment by mounting small lead sulfide crystal on goniometer head, looking at shadow (absorption image) on YAG crystal

Imaging system installed at the high pressure experiment.

