

APS Metrology Laboratory – Update on Instrumentation and Recent Activities

Lahsen Assoufid

OFM Group

Experimental Facilities Division

Advanced Photon Source

Outline

- Update on mirrors and their measurements
- Overview of instrumentation and upgrades
- Stitching program and future plans
- Closing remarks

Example of mirrors, substrates and benders evaluated at the APS metrology laboratory

BioCARS mirror-bender (R. Pahl)

GSECARS K-B substrates (Owner: P. Eng)

Bimorph mirrors (HP, D. Hausermann

UNI, K-B optics (Owner: G. Ice)

XOR mono-bender (Owner: Suresh)

Measurement requests over the years

Large: 0.5 - 1.2 m Small: =300 mm

TWG Meeting

October 16, 2003

Mirror surface quality

Parameter	Large Mirrors (0.5 - 1.2 m)		Small Optics (=300 mm)	
	Best	Typical	Best	Typical
Slope error (µrad rms)	0.43	2.0 - 2.5	0.3	1.0 - 2.0
Roughness (Å rms)	1.4	1.5 - 2.5	0.5	1.5 - 2.5

APS LTP II: Installation of a new mirror tip/tilt table

Evaluation of a IMCA-CAT mirror-bender assembly using the newly-installed tip/tilt table.

- Can handle larger and heavy mirror assemblies
- More stable and, therefore, safer
- Provides large height clearance.
- Can be motorized for remote control operation and automatic multiple scans.

Development of a stitching interferometry system for evaluating large x-ray mirrors and substrates

Basic principle

Motivations for stitching

- Stitching can cover a range of spatial frequency wider than with the current LTP systems.
- High resolution measurement can be obtained provided that the subaperture measurements are accurate and free from errors.
- 3-D surface profile of the a full mirror aperture can be obtained, while the LTP only provides a single trace profile.
- A 3-D surface profile can allow one to chose the best area on the mirror surface, which is particularly useful for ID beams.
- The data can be useful for simulation purposes.
- Measurements can be automated.
- Complementary to LTP (Independent measurement)

Principal of stitching

Application to a 460-mm-long float glass substrate

Stitched surface contour profile

Application to a 460-mm-long float glass substrate - Comparison with the LTP

Application to a 300-mm superpolished Si flat substrate

Top: Height contour profile - Bottom: Residual slope contour profile over the useful area (inner rectangle in a) => No evidence of overlap error observed.

	STITCHING	LTP	ASML
rms slope error (µrad)	0.64	0.66	0.62

A measurement of the 300 mm superpolished Si flat with the NIST XCALIBIR interferometer

APS mirror figure error

- ▶ Good signal-to-noise ratio with sub-nm height resolution.
- ▶ High frequency noise ~0.2 nm (2 x silicon atom diameter).
- ▶ Source of low frequency component not yet understood. Could be vibration related noise.

Courtesy U. Giesmann, NIST

Stitching challenges

- Obtain accurate and error-free subaperture measurements is the main challenge.
- Interferometer-related errors:
 - ✓ system aberrations and PZT phase shifter nonlinearities:
 - => Calibration
 - ✓ Noise:
- => Averaging
- Environment-related errors:
 - ✓ Air turbulence:
 - => Small airpath/cavity, averaging
 - ✓ Mechanical stability/vibration:
 - => Better design, averaging
 - => Real time interferometry
 - ✓ Temperature stability

Interferometer calibration

- Interferometers always measure the sum of error in reference surface and test part surface.
- Methods for "error separation" have been devised during the past 20 years.

3-flat test:

$$\begin{array}{lll} M_1(x,y) &=& A(x,y) \ + \ B(-x,y) \\ M_2(x,y) &=& A(x,y) \ + \ C(-x,y) \\ M_3(x,y) &=& B(x,y) \ + \ C(-x,y) \\ \text{(See for example: Chiayu Ai and J.C. Wyant, Appl. Opt. 32, 498-4705 (1993).)} \end{array}$$

N-position test: N-1 additional measurements are made with flat C rotated by 360°/N increments. The topography of all surfaces can then be determined

with the exception of a component with N-fold symmetry.

3-Flat N-position test:

R. E. Parks, L. Shao, and C. J. Evans, Appl. Opt. **37**, 5951-5956 (1998)

3-Flat rotational shearing test:

K. R. Freischlad,Appl. Opt. 40, 1637-1648 (2001)

Lateral shearing test:

C. Elstner,

Appl. Opt. 39, 5353-5359 (2000)

Development of tools and methods for metrology of elliptical K-B mirrors

- Diffraction-limited K-B mirrors are in demand (G. Ice and J. Tischler)
- K-B mirror substrates with 0.2 µrad rms slope error are expected to be delivered soon (G. Ice and A. Khounsary)

Possible Techniques:

- √ PMI + null optics
- ✓ Microstitching interferometry
- ✓ High resolution small trace laser profiler
- ✓ Large-Area Curvature Sensor Method

Metrology of K-B mirrors with Phase Measuring Interferometry Reference wave Test surface ➤ Requires a non standard transmission optic to generate the Interferometer focus desired test wavefront. **Transmission** Collimating / Null Lens Beam Optic Splitter Laser PZT shifter Zoom Lens & Imaging optics Optic under test Detector TWG Meeting October 16, 2003

Metrology of K-B mirrors: Microstitching Interferometry

Needs:

- ✓ A high resolution interferometer
- ✓ A high resolution positioning system
- ✓ A stitching software

A possible interferometer for microstitching + TOPO2D/3D replacement?

The Talysurf CCI 3000 from Taylor-Hobson

- Broadband interferometer
- Controlled bandwidth light source
- Highly repeatable scanning transducer
- Resolution: 10pm (0. 1Å)
- Repeatability: 0.03 Å rms
- Measures supersmooth and rough surfaces.

Example of measurement of a polished Si sample with a Talysurf CCI 3000


```
Sa = 0.07072 nm
Sa: Arithmetic Mean Deviation of the Surface.

Sq = 0.093034 nm
Sq: Root-Mean-Square (RMS) Deviation of the Surface.

St = 1.1102 nm
St: total height of the surface.
```


Metrology of K-B mirrors: Development of a high resolution small trace laser profiler

- Short trace length <300 mm
- Improvement of both mechanically- and environmentally-induced errors.
- A different sensor scheme should be developed

Large-Area Curvature Sensor Method

By Michael Shultz, and Ingolf Weingartner
Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

By Michael Shultz, and Ingolf Weingartner

Closing remarks

- The quality of mirrors continues to improve
- Instruments will be gradually upgraded
- Stitching interferometry is being developed for high resolution measurement of flats
- The stitching technique will be extended to measurement of elliptical K-B mirrors
- We appreciate any feedback and data sharing on actual beamline performance of your mirrors.
- We are open for collaboration on metrology measurements and instrumentation R&D.
- We welcome any suggestions that will help us to provide you with the best of services.
- Metrology measurements are free of charge for APS users.

Acknowledgments

- J. Qian, OFM/XFD APS
- M. Bray, MB-Optique
- D. Shu, XFD/APS
- D. Nocher, XFD/APS
- G. Czop, OFM/XFD
- C. Liu, OFM/XFD

- P. Takacs, BNL
- U. Griesmann, NIST
- G. Ice, UNICAT, ORNL
- J. Tischler, UNICAT
- A. Khounsary, OFM/XFD APS
- A. Macrander, OFM/XFD APS

Work supported by the U.S. DOE, Basic Energy Science, Office of Science, under contract No. W-31-109-ENG-38.