

#### Operations Directorate Issues

- Extended Straight Section
- Higher Current Issues

Rod Gerig

**TWG** 

January 22, 2004

#### **Argonne National Laboratory**



A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago











#### **Enhancements Discussed**

- Extended Straight
- Pathway to higher current
- "Quiet" Injection
- Special Operating Modes



#### Extended Straight Section Considerations

#### Imposed Constraints

- Inboard shift cannot exceed 70 mm.
- Dipole Field cannot exceed 1.3 T (presently .6 T)
- Superconducting Undulator should not be located at the limiting vertical aperture in accelerator
- Accelerator performance not negatively impacted
- Attempt to achieve requested length



#### Diagram showing two sectors



## Two Cases Analyzed

- Case 1: The upstream and downstream quadrupole triplet would become a doublet. The insertion length would be 8.5 m (an extension of 2.9 m).
- Case 4: The upstream and downstream quadrupole triplet would become a doublet and the upstream BM dipole and the downstream AM dipole would be shortened. The insertion length would be 11.9 m (an extension of 6.3 m)



#### Accelerator Performance Prediction

|                                                                         | Performance in SR                                 | Numerical simulation                               |
|-------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Ideal Lattice                                                           | Not available                                     | Better than reference                              |
| Present (Reference) lattice<br>(Ideal with errors<br>included) (5.59 m) | Reference measurements of lifetime and efficiency | Reference momentum and dynamic apertures obtained  |
| Case 1: Doublet with lattice errors (8.518 m)                           | As good as reference                              | Lifetime reduced by ~40% Aperture reduced slightly |
| Case 4: Short dipole and doublet with lattice errors (11.9 m)           | Measurement is not available                      | Similar results to case 1.                         |



# There is a unique solution for minimum beamsize in a symmetric lattice







# The minimum beam size occurs when entrance beta is equal to the drift space length













## Cost Analysis for Extended Straight Cases

| Costs for Case 1: 8.6 meter insertion length |           |  |
|----------------------------------------------|-----------|--|
| Chamber extrusion for S5 and S1              | \$65,000  |  |
| Chamber welding, assembly                    | \$30,000  |  |
| S5 and S1 girders                            | \$10,000  |  |
| Pedestals, jacks, supports, stands           | \$20,000  |  |
| Engineering and design                       | \$100,000 |  |
| Assembly and installation                    | \$20,000  |  |
| ID chamber                                   | \$188,000 |  |
| Total case 1                                 | \$433,000 |  |

| Costs for Case 4: 11.9 meter insertion length |             |  |
|-----------------------------------------------|-------------|--|
| Chamber extrusions                            | \$165,000   |  |
| Chamber welding and assembly                  | \$75,000    |  |
| Dipole magnets                                | \$380,000   |  |
| Girders                                       | \$40,000    |  |
| Pedestals, jacks, supports, stands            | \$22,000    |  |
| Absorbers                                     | \$100,000   |  |
| Bellows                                       | \$84,000    |  |
| Engineering and design                        | \$410,000   |  |
| Assembly and installation                     | \$40,000    |  |
| ID chamber                                    | \$188,000   |  |
| Total Case 4                                  | \$1,504,000 |  |



## Physics Issues Still Under Consideration

- What is the impact of multiple installations? (incremental emittance growth with each: Case 1-.007nm; Case 4 -.08nm)
- Can two implementations be put on adjacent straights? (probably not)
- What is the impact on plans for future reduction in emittance? (not known, work underway)



# Accelerator High Current Study



Data from 12/22/2003@2 to 12/22/2003@18



