

Development of a highly efficient and tunable fluorescence detector with an energy resolution of about 1eV

Klaus Attenkofer*, Bernhard Adams*, Marco Wiedenhoeft*

*:XFD/Sector 11

#:XFD/Sector7

Argonne National Laboratory

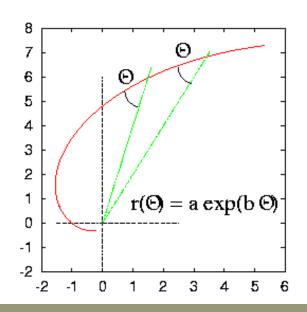
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

An EXAFS-Detector for Time Dependent Spectroscopy: The Require

High Effici

- High Detection Efficiency
- •Large Solid Angle (2p)

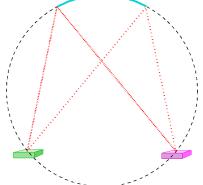
Fast Time Response:


- •Processing Time (< 10ns/count)
- Option of Multi Photon-Counting per X-ray Pulse

- •Tunable in Energy
- •Tunable Energy Resolution (20-0.5eV)
- Imaging / Energy Resolution
- Easy to use (Computer Control)
- Option of Multi-Element-System

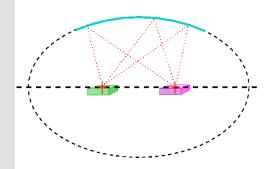
Crystal Optics with Variable Crystal-Shape

What are the Basics of a Crystal Optics

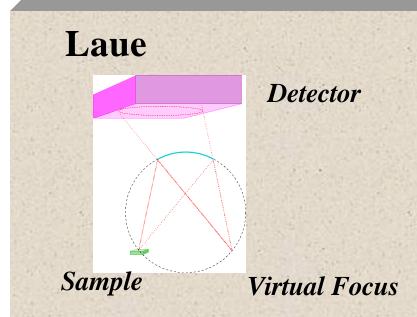


Basic Principle:

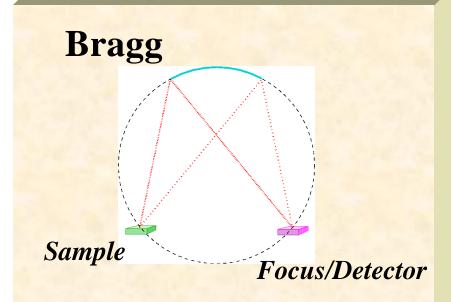
The shape, which is defined by a **constant angle q** is called **logarithm spiral**


Approximations:

Circle-Segment:


- •Good approximation for back-reflection
- •Small angle acceptance

Ellipse-Segment:



- •Better approximation of the logarithm spiral
- •Image of the source

Laue Versus Bragg Geometry

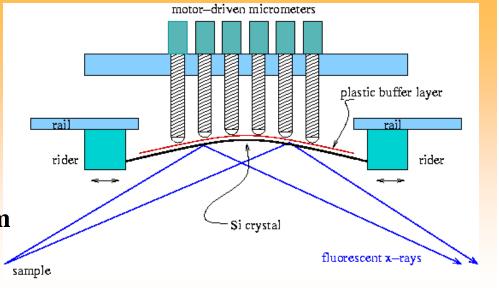
- •Large Detector (time response!)
- •Thin crystal for low energies
- •Back-side of the crystal has to be open

- •Small Detector/Focus
- •Crystal thickness is defined by the maximal strain
- Mechanical support on the back

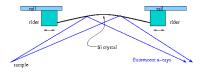
The Bending Concept

The Bender:

•Typical Si 100

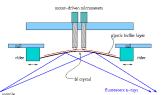

•Size: ~140x20mm²

•Thickness:150mm-480mm

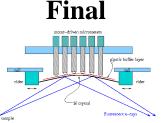

•Sample-Crystal distance: ~35-40cm

•Solid angle: 5x10⁻⁴ (depending on

crystal and bending radius)



First Step:

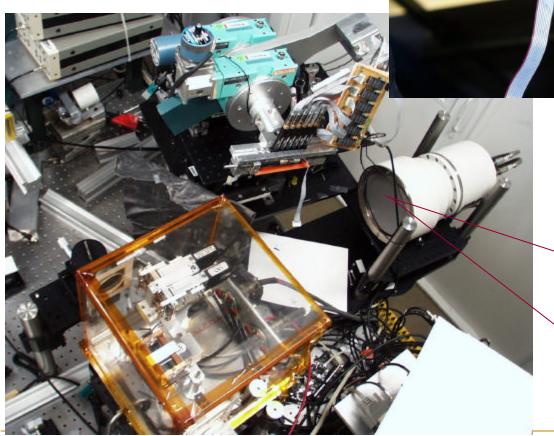


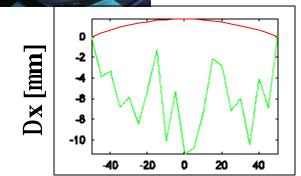
Shape: ~Sinus

Second Step:

Iterations....

Shape: closer to desired shape


Shape: desired shape

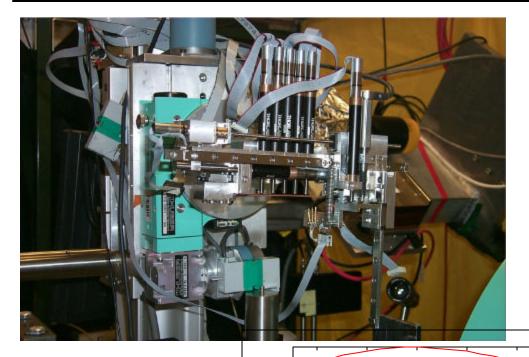

Correction based on shape measurements and optical image!

The Test-Device

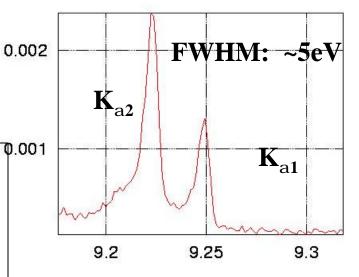
Ga-K_{a1/2}

Detector Options & Electronics

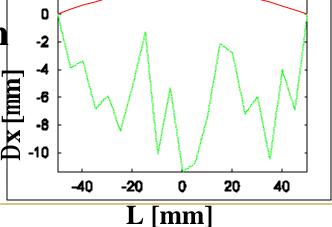
	APD	Plastic Scintillator	Andor CCD (with MCP amplifier)	Mar CCD (165)
Size:	<2mm²	1-10cm ²	Depending on demagnification	Diameter 165mm
Time Resolution	<100ps	1-30ns	<150ns	none
Available	Yes/No (Array)	Yes (new detectors are in development)	No	Yes


Electronics:

Two different systems are available, which allow to record the intensity of each individual x-ray bunch (up to a ms -> Laser-repetition rate)



First Results:


Energy Scan:

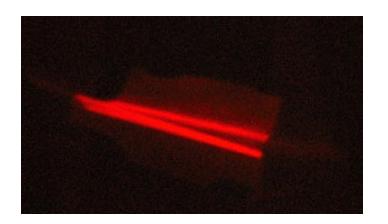
Large area detector without slit (x-ray beam: 50mm x 20mm) ~50% efficiency

Profile Scan

Deviations about 5-10mm

Ka1: 9251.74 eV

Ka2: 9224.82 eV



Future & Conclusions

Future:

- Improvement of mechanics (increasing of degrees of freedom)
- Improvement of profile-meter
- Optimization algorithm -> Computer control
- Miniaturization of mechanics
- Resources for multi-element system

Conclusion:

- •Successful prove of principle
- •Working prototype with 5eV resolution at 50% efficiency
- •Computer control on all important motions (for energy and shape change)
- •Unit price ~\$15000-\$20000

