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1. Picosecond beamlines need flexibility
a) Energy and energy bandwidth
b) Fill pattern

2. Laser and laser synchronization must be 
part of the machine and beamline design

a) Timing signal distribution
b) Beamport for visible synchrotron light

3. Unique challenges undertaken by an 
enthusiastic and increasingly technically 
sophisticated User community

a) Spatial and temporal laser pulseshaping
b) Specialized x-ray techniques
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Rousse et al., RMP 73, 17 (2001).

Two types of pump/probe experiments

X-Ray

Laser

Jitter is an issue with both types of experiment.

X-Ray

Laser

Time resolution 
limited by detector; 
poor sensitivity

Time resolution 
limited by probe 
duration; X-ray 
chopper may be 
required which will 
be more difficult 
with larger vertical 
beam emittance
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• “Perfect” 
synchronization

• <500 fs
• Low flux
• Low brightness (4π)
• Limited tuning range
• Limited pump-probe 

delay

• picosecond 
synchronization     

• 100 ps typical 
• High flux
• High brightness 
• Tuneable
• Arbitrary pump-probe 

delay

Laser plasma ID (3rd Generation)

The real competition

Courtesy D. Reis



Sub-picosecond structural phase transition

• For ϕ = 24 deg and x-rays grazing: ~18 fs/pixel

• Measures complete time history around t=0 in      
single shot

A. Lindenberg et al., SLAC
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Femtosecond laser oscillators can be 
synchronized to stable rf to a few hundred fs



However accelerators are not 
“perfect” rf sources



streak camera resolves transient 
switch

Laser off

Laser on

~6 times the speed of sound:  ambipolar diffusion.
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The prominent laser-induced 4p resonance enables a simple x-
ray — laser cross-correlation measure of x-ray bunch length.

X-ray — laser cross-correlation

ANL AMO Group



SingleSingle--shot timing by shot timing by electrooptic electrooptic samplingsampling

200 mm ZnTe crystal200 mm ZnTe crystal

ee--

Ti:s 
laser
Ti:s Ti:s 
laserlaser

Adrian Cavalieri et al., Adrian Cavalieri et al., U. Mich.U. Mich.

SingleSingle--ShotShot

<300 fs<300 fs

Timing Timing 
JitterJitter

(20 Shots)(20 Shots)

ee-- temporal information is temporal information is 
encoded on transverse profile of encoded on transverse profile of 
laser beamlaser beam



Femtosecond lasers can be synchronized to 

within a pulse duration using optical techniques

Kobayashi and Endo

• This synchronization can be maintained throughout a laser amplifier system.

• Really hot new techniques can synchronize lasers to within an optical period (< 1 fs)!

• We need this level of timing control to fully exploit the picosecond x-ray source



LUX Timing Distribution Concept



An Optical Sampling 
Scope
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ALS:  DeSantis et al.
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