Pump-probe experiments with ps x-rays

Eric Landahl, XOR/TRR

- 1. Picosecond beamlines need flexibility
 - a) Energy and energy bandwidth
 - b) Fill pattern
- 2. Laser and laser synchronization must be part of the machine and beamline design
 - a) Timing signal distribution
 - b) Beamport for visible synchrotron light
- 3. Unique challenges undertaken by an enthusiastic and increasingly technically sophisticated User community
 - a) Spatial and temporal laser pulseshaping
 - b) Specialized x-ray techniques

Incomplete Acknowledgements

- U.Michigan research groups (D. Reis, P. Bucksbaum, R. Merlin)
- SLAC (R. Akre, A. Cavalleri, J. Heritage)
- Sector 7 Staff (B. Adams, E. Dufresne)
- AOD Diagnostics (B. Yang)
- ASD Accelerator Physics (Y. Li)

Two types of pump/probe experiments

Jitter is an issue with both types of experiment.

Pulse energy vs. Repetition rate: Femtosecond Lasers at Light Sources

Battle to Become the Next-Generation X-ray Source

15 NOVEMBER 2002 VOL 298 SCIENCE

X-RAY VISIONS: TODAY'S SYNCHROTRONS AND BEYOND
--

Machine	0.1% BW Photons per pulse	Pulse length	Pulses per second	Estimated cost	# of beamlines
3rd-Generation Synchrotron	10 ³ →10 ⁴ 10 ⁵	~ 10–160 ps	5.4 million	>\$1 billion	~100
Slicing Source	10 ³ –10 ⁴	~ 100 fs	10–10,000	\$5 million	1 or 2
Short-Pulse Photon Source	10 ⁵	~ 100 fs	10	\$0.1 million to	0 ?
Recirculating Linac	10 ⁴ –10 ⁷	~100 fs	1000–10,000	\$300 million t \$500 million	° ~10
Free Electron Laser (LCLS)	10 ¹¹ –10 ¹²	~200 fs	60–360	\$250 million	1+
no – nicococondo o	r 10-12 cocondo				

ps = picoseconds, or 10^{-12} seconds

fs = femtoseconds, or 10^{-15} seconds

The real competition

Laser plasma

ID (3rd Generation)

- "Perfect" synchronization
- <500 fs
- Low flux
- Low brightness (4π)
- Limited tuning range
- Limited pump-probe delay

- picosecond synchronization
- 100 ps typical
- High flux
- High brightness
- Tuneable
- Arbitrary pump-probe delay

Courtesy D. Reis

Sub-picosecond structural phase transition

- For $\varphi = 24$ deg and x-rays grazing: ~18 fs/pixel
- Measures complete time history around t=0 in single shot

A. Lindenberg et al., SLAC

Sector 7 Ti:Sapphire CPA system

Femtosecond laser oscillators can be synchronized to stable rf to a few hundred fs

However accelerators are not "perfect" rf sources

SPPS LASER Oscillator
0.5 degree phase error injected on reference RF

streak camera resolves transient switch

~6 times the speed of sound: ambipolar diffusion.

X-ray — laser cross-correlation

The prominent laser-induced 4p resonance enables a simple x-ray — laser cross-correlation measure of x-ray bunch length.

Single-shot timing by electrooptic sampling

e⁻ temporal information is encoded on transverse profile of laser beam

Femtosecond lasers can be synchronized to within a pulse duration using optical techniques

FIG. 5. Experimental set up for the synchronization of two mode locked oscillators.

Kobayashi and Endo

- This synchronization can be maintained throughout a laser amplifier system.
- Really hot new techniques can synchronize lasers to within an optical period (< 1 fs)!
- We need this level of timing control to fully exploit the picosecond x-ray source

LUX Timing Distribution Concept

An Optical Sampling Scope

laser pulse length << bunch length

ALS: DeSantis et al.

ALS Bunch Profile in Time

High Dynamic Range

Camshaft/Background ~ 10³

ALS: DeSantis et al.

Synchronous Phase Transients

Bunch Length

Pump-probe experiments with ps x-rays

Eric Landahl, XOR/TRR

- 1. Picosecond beamlines need flexibility
 - a) Energy and energy bandwidth
 - b) Fill pattern
- 2. Laser and laser synchronization must be part of the machine and beamline design
 - a) Timing signal distribution
 - b) Beamport for visible synchrotron light
- 3. Unique challenges undertaken by an enthusiastic and increasingly technically sophisticated User community
 - a) Spatial and temporal laser pulseshaping
 - b) Specialized x-ray techniques