# New indirectly cooled monochromator crystals at 20-ID Steve Heald, PNC-CAT, July 21, 2005

- Description of previous system
- Some basics on indirect cooling
- New design and performance

#### Old design

- Based on APS standard directly cooled crystal
- Two side by side crystals
  - 111 and 311
  - Crystal change by translating entire monochromator 60 mm
- Worked reasonably well, but some small vibrations and some sensitivity to LN2 pressure
- Difficult to get leak tight

## Old crystal mount



## Old crystal mount - crystals



#### Indirect versus direct cooling

- See Chumakov etal JSR 11, 132 (2004) for basic design
- Direct: transfer through Si, transfer through Si/LN<sub>2</sub> interface
- Indirect: trans. thru Si, Si/In/Cu interface, trans thru Cu, Cu/LN<sub>2</sub> interface
- Main difference is the Si/In/Cu interface
  - Good contact gives about 10<sup>4</sup> W/m<sup>2</sup>/K
  - 4x8 cm sides with 300 W gives temp rise of about 5K

Indirect cooling should have similar performance to direct cooling using LN<sub>2</sub> about 5K warmer.

#### **FEA** calculations

Zhang etal JSR 10, 313 (2003)



## **New Crystals**



## New crystals installed



### Performance at high power





#### Conclusions

- Indirect cooling easily handles current heat load
- No visible vibrations remain in beam when imaged at high magnification
- I<sub>0</sub> fluctuations reduced about 5x
- LN<sub>2</sub> pressure changes of 5-10 psi made negligible change in tuning