

What's New with APS Insertion Devices

Liz Moog TWG Meeting Nov 16, 2005

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Recently installed new undulators

Sector 3 (XOR):

- The 2.7-cm-period undulator had its magnets replaced with new, stronger magnets in Jan 2005
- A new 2.7 cm device was designed, built, and installed in May 2005
- Also in May, the 5-mm-aperture vacuum chamber was replaced with a standard 8-mm ID chamber.

Recently installed new undulators, cont.

Sector 30 (IXS):

 Two newly-designed 3.0-cm-period undulators were installed in May 2005

Canted undulator sectors 23 (GM/CA) and 21 (LS):

 Two more of the 3.0-cm-period undulators, this time in the shorter length, were installed in Sept. 05.

New undulators in preparation

Sector 4 (XOR):

 A newly designed 3.5-cm-period undulator is being built, with installation planned for Jan 2006.
 The permanent magnets will be of SmCo (instead of NdFeB) for better radiation resistance.

Sector 26 (Nano)

 A 3.3-cm-period Undulator A, removed from LEUTL, is being prepared and retuned to meet storage ring requirements. It will join a newly remagnetized Undulator A for Jan 2006 installation.

IDs Installed as of Sept 2005

Туре	Number	Length	K _{eff}
		(periods)	
33-mm undulator	23	72	2.605
33-mm undulator	4	62	2.605
30-mm undulator	2	79	2.07
30-mm undulator	2	69	2.07
27-mm undulator	2	88	1.63 & 1.68
55-mm undulator	1	43	6.57 [§]
18-mm undulator	1	198	0.455 [§]
Elliptical wiggler	1	18	$K_{y} = 14.7^{\dagger}$
(16 cm)			K _x ≤1.4
Circularly polarized	1	16	K _y ≤2.86 K _x ≤2.75
undulator (12.8 cm)			K _x ≤2.75

Device length includes the ends - approx. one period at each end is less than full field strength.

K value is at 11.0 mm gap unless stated otherwise. (CPU and horizontal elliptical wiggler field are electromagnetic, with different fixed gaps.)

[§] at 10.5 mm gap.

 $^{^{\}dagger}$ at 24 mm gap (the device minimum), values are for peak K, not K_{eff}

New undulators in preparation, cont.

Sector 14 (BioCARS):

- Magnet requisitions have begun for a new 2.7-cmperiod undulator.
- A magnetic design has been completed for a new 2.3-cm-period undulator, and the magnet requisition has been started.
- Installations are planned for Sept & Dec 2006

On-Axis Brilliance: APS planar permanent magnet devices

On-Axis Brilliance: Undulator A versus 2.7-cm-period device and 1.5-cm-period SCU (NbTi and Nb₃Sn)

 Superconducting undulators (SCUs) operate at a pole gap of 8 mm. The assumed magnetic fields on axis are 0.8 T for NbTi and 1.2 T for Nb₃Sn (all lengths 2.4 m).

Superconducting Undulator R&D

We are pursuing an in-house program so we understand the challenges and solutions. Also, we need to develop magnetic measurement capability.

NHMFL-APS collaboration

- •Conceptual design for the Nb₃Sn 1.5-cm-period SCU and cryo-system was completed last fall.
- •Present project is a demonstration project to demonstrate feasibility.
- •Proposal is for a beam tube at LN2 temp.
- •The larger gap is achieved using Nb₃Sn conductor with its higher critical current.
- •Completion of the demo project is expected in spring 2006.

Lawrence Berkeley Lab - APS collaboration

- •The LBL team is testing two different superconducting wire insulation schemes that would allow better packing of the windings
- Two test coils will be wound, reacted, epoxy vacuumimpregnated, and tested to determine performance
- •A high packing density for conductor makes for a stronger field. However, the conductor must be kept small to prevent flux jumping, which causes premature quenching at currents less that the expected critical current.

Radiation damage to Sector 3 undulators versus time

Update on radiation damage

Sector 3 has been suffering from continuing radiation damage since topup began in 2001.

The new and reworked undulators have a stronger field so the small-gap vacuum chamber was no longer needed to reach desired wavelengths. The small-gap vacuum chamber could be replaced by a standard one, and was, in May.

In Sept, the IDs were removed and checked. No radiation damage was seen! Hooray!

Sector 4 still has a small-gap chamber, and needs it for the CPU. But its Undulator A suffers considerable radiation damage every run.

The SmCo undulator should be more radiation resistant. We hope it will not need remagnetizing every run. (The planned scraper should help too.)

A three-pole
"miniundulator"
has been
installed.
Radiation
resistance of
different
magnet
grades will be
compared.

Test sample demag results after one run

- Small changes in the sample magnets were observed after one run
- Changes in heat treated samples were less than the non-heated ones
- Not much difference between non-heated SmCo and non-heated NdFeB
 (Note that this grade of NdFeB is more rad-resistant than what we use in our
 undulators. It is also weaker.)
- We can conclude that the new SmCo undulator should survive better, but it may not be totally immune to our radiation. Scraper will help!

Credits (alphabetical order)

- Undulator magnetic design: Shigemi Sasaki & Ken Thompson
- Undulator mechanical design: John Grimmer
- Undulator magnetic structure assembly and maintenance:
 - MD group and Kurt Boerste and Chuck Doose
 - XFE group and John Grimmer, Matt Kasa, Mike Merritt, John Terhaar
- Undulator mechanical supports: John Grimmer, Matt Kasa,
 Mike Merritt, John Terhaar
- Undulator tuning: Shigemi Sasaki & Isaac Vasserman
- Calculations of radiation output: Roger Dejus & Shigemi Sasaki
- Radiation damage test: Maria Petra and Shigemi Sasaki
- Superconducting undulator: Chuck Doose, Suk Kim, Bob Kustom, National High Magnetic Field Lab, Lawrence Berkeley Lab

