First results with integrating
2nd generation Berkeley Cartesian automounters
into GM/CA CAT beamline controls

Oleg Makarov
OUTLINE

- Introduction
- Berkeley automounter of the second generation
- BAM2 software solution
- BAM2 integration into beamline control system
- Future plans
Introduction

- High-throughput macromolecular crystallography
 - Automated data collection
 - Automated sample changing
 - Automated data processing
Use of the automounter and remote operations

% user group visits

APS run cycle

- Automounter
- Remote Users
Berkeley automounter of the second generation

- Adept Python linear XYZ Cartesian module
 - Flexibility in motion
- Pneumatic gripper and rotation stage
 - Same as in the first robot generation
- Force sensor and touch probe
 - Automated alignment
- Stationary foam Dewar with heated lid
 - No maintenance
Berkeley automounter of the second generation

...installed at the 23BM-B experimental station
BAM2 software solution

- The Adept V+ real-time and multi-tasking operating system
 - Executes low-level commands
- Adept Desktop
 - Windows-based GUI
 - Connects over Modbus/TCP
- Java-based “CAM-commander” control program
 - Developed with Java NETBeans IDE
 - Connects to Adept controller over Modbus/TCP
 - Provides command line interface
BAM2 integration into beamline control system

- **EPICS robot server**
 - Receives commands via CA
 - Moves goniometer to mount position
 - Relays commands to BAM2 interface PVs

- **EPICS interface PVs:**
 - `<bl>:BAM2:cmd`
 - `<bl>:BAM2:ack`
 - `<bl>:BAM2:rsp`
 - `<bl>:BAM2:err`

- **“CAM-EPICS commander” control program**
 - Receives commands and provides responses through EPICS interface PVs

Diagram:
- Adept controller
 - Adept Python XYZ
 - Digital IO
 - Analog IO
 - Modbus/TCP
 - Ethernet LAN
 - EPICS IOC with robot server
 - Beamline computer with CAM-EPICS commander
 - Beamline computer with MEDM GUI
 - Windows computer with Adept Desktop GUI
 - Beamline computers with user JBLUICE
 - Beamline computers with user JBLUICE
BAM2 integration into beamline control system

- MEDM screens for BAM2
 - Dewar layout screen
 - BAM2 commands
 - Sample history
 - BAM2 interface PVs
Future plans

BAM2
- Optimize robot control program for faster operation
- Incorporate robot control program into the robot EPICS server
- Move robot to the 23ID-B beamline after integration with beamline controls and commissioning
- Add support for Rigaku packs

BAM1
- Update old robots with servo-motor driven linear stages and a force sensor
- Add a procedure for auto-alignment
The team

GMCA-CAT
- Robert Fischetti
- Craig Ogata
- Sergey Stepanov
- Mark Hilgart
- Sudhirbabu Pothineni
- Shenglan Xu
- Steve Corcoran
- Dale Ferguson

LBNL
- Thomas Earnest
- Carl Cork
- James O'Neill

- GM/CA-CAT is supported by the National Institute of General Medical Sciences (Y1-GM-1104) and the National Cancer Institute (Y1-CO-1020) of the US National Institutes of Health.