

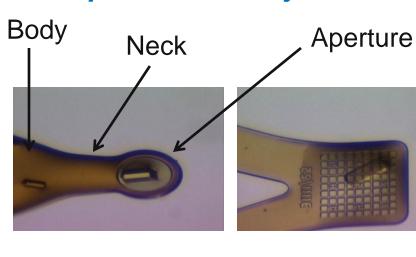
... for a brighter future

Testing commercial sample-mounting loops for movement in the cold-stream

By R. W. Alkire

This work performed in collaboration with F. J. Rotella and N. E. C. Duke

UChicago ► Argonne_{LLC}


A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Goals

- The object is to quantitatively measure the stiffness of commercial sample mounting loops and determine if they are moving under the influence of the cold-stream
- When completed, measure real protein samples and see if loop movement is present during normal data collection
- The loops under study are:
 - Mitegen
 - Microloop
 - MicroMesh
 - Microloop HT
 - Dual Thickness Microloop
 - Microloop LD
 - Hampton Cryoloop
 - Litholoop and Litholoop Mesh

Loops under study

Mitegen Microloop HT

Mitegen MicroMount MicroMesh

Mitegen Dual Thickness MicroMount

Mitegen Microloop LD

Hampton Cryoloop

Litholoop

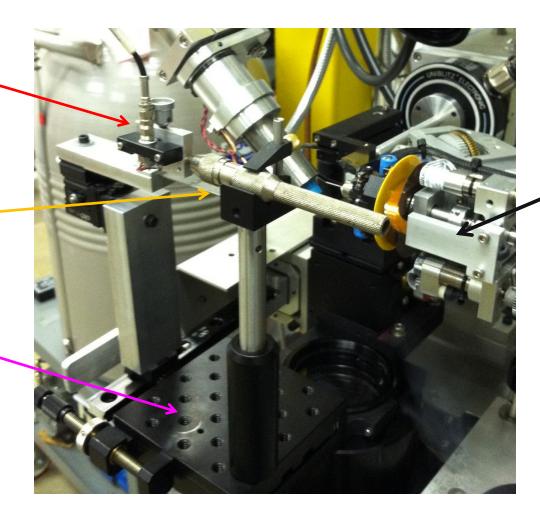
Litholoop Mesh

Loop characteristics

Manufacturer	Aperture Thickness (µm)	Body Thickness (µm)	Neck/Body Width (µm)	Aperture Opening (µm)	
Mitegen Microloop	10	10	200/730	200	
Mitegen MicroMesh	10	10	375/730	300	
Mitegen Microloop H	Г 18	18	200/800	200	
Mitegen Dual Thickne (DT) MicroMount	ess 10	25	200/730	200	
Mitegen Microloop LD) 10	25	100/730	200	
Hampton Cryoloop	20	20	40/40	oval 100x200	
Mol. Dimensions Litholoop Mol. Dimensions	25	25	80/350	200	
Litholoop Mesh	25	25	80/350	200	

Methods

- Position cold-stream: Coplanar, 42° angle, facing the sample; offset
 1.5mm vertically to center gas temperature profile on sample
- Sample loops all have ~0.2mm diameter apertures
- Attach Si crystal cubes, 0.2mm on edge, to loops using Apiezon-T grease
- Align loop with desired orientation facing the cold-stream
- Measure the Si(220) reflection
 - Find reflection in rotation angle and direction using CCD detector
 - Measure using unbiased photodiode with output sent directly to Tektronix oscilloscope
 - Timing trigger established by goniometer Heidenhain encoder: 180,000ct/deg
 - Perform repeat scans and determine standard deviations for angular and intensity measurement sets; all scans performed at 1sec/deg rate
 - Measure each loop-set a minimum of 12 times

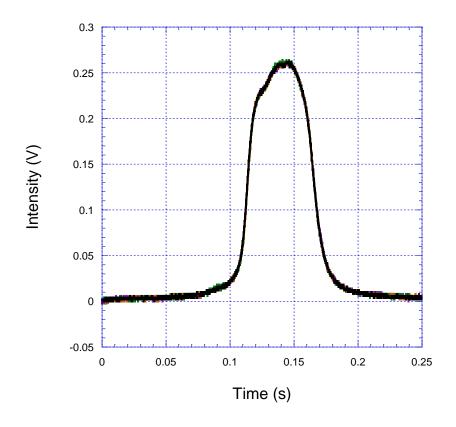


Photodiode setup

Enclosed photodiode

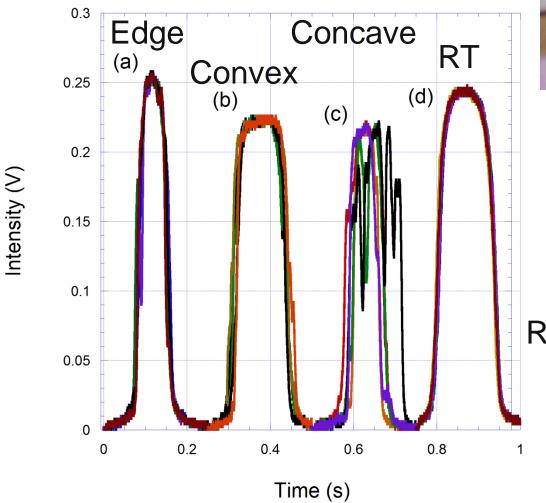
Beam stop reference

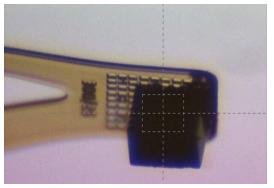
Translation stage



Kappa

Instrumental baseline


- To determine instrumental (no loop) baseline
 - Use Si cube mounted via epoxy to SS pin



Six scans RMS (pos) = 0.09mdeg $\sigma(I)/(I)\% = 0.16$

Mitegen MicroMesh, grease mount

Think of Mitegen design like a fountain pen

RMS (mdeg), σl/l%

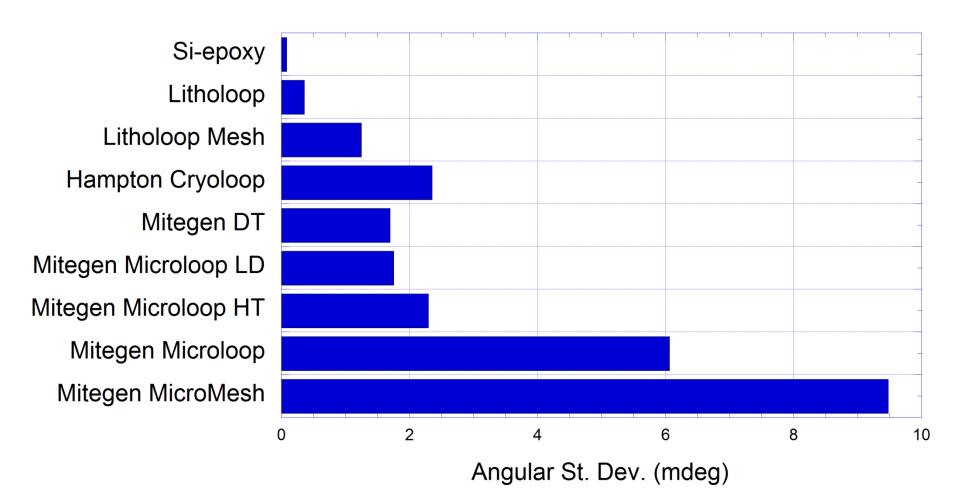
a) 2.3

2.9

b) 3.5

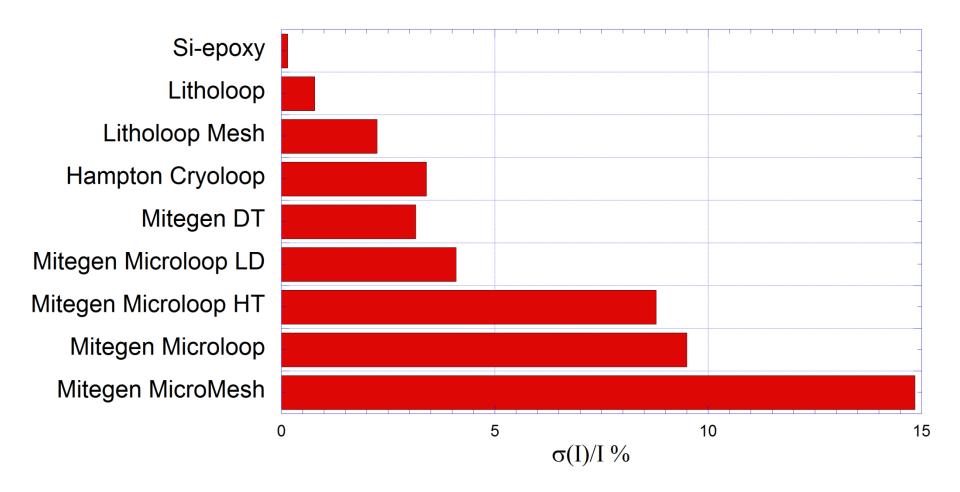
5.1

c) 10.1


21.6

RT d) 1.43

0.4

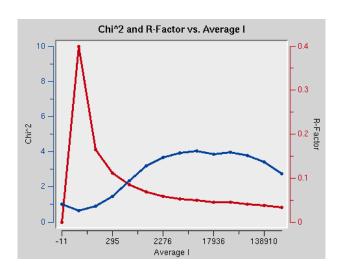


Loop Angular Deviations (mdeg)

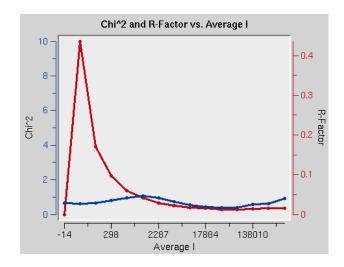
Loop Integrated Intensity Deviations (%)

Silicon loop testing results

- All loops showed motion relative to the "no loop" baseline
- Stiffness increases with loop thickness
- Loop motion depends upon loop orientation
- Loop motion can vary from loop to loop
- Grease mounting does not account for added support provided by frozen solvent -- this means the stress test only addresses relative loop strengths, not necessarily how it will perform under actual experimental conditions


Lysozyme testing for loop motion – experimental setup

- Differential measurement on the same crystal
 - Use two datasets taken at Kappa=0° and Kappa=-45° to avoid crystal-to-crystal comparisons
 - At midpoint of the 95° data collection range, widest part of loop faces cold-stream at Kappa=0°
 - At Kappa=-45°, loop is aligned parallel with cold-stream axis at scan midpoint
- All data collected at a scan rate of 1deg/sec, 12.66keV, 95° scan range with average redundancy 5.5 or better
- All data collected using Moore Tool table, single 1deg frames
 - 180,000ct/deg Heidenhain encoder



Motion detecting criteria – four separate trials on each loop

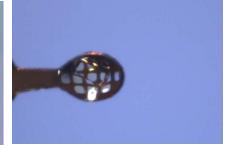
- Rmerge must be significantly different between Kappa=0°and Kappa=-45° in the first two low resolution shells
- HKL3000 Scaling Chi Squared versus Average Intensity must show elevated profile at Kappa=0°
- The number of rejected reflections should be lower at Kappa=-45°
- If any one data set showed motion, the loop is labeled as showing motion

Motion present

Motion absent

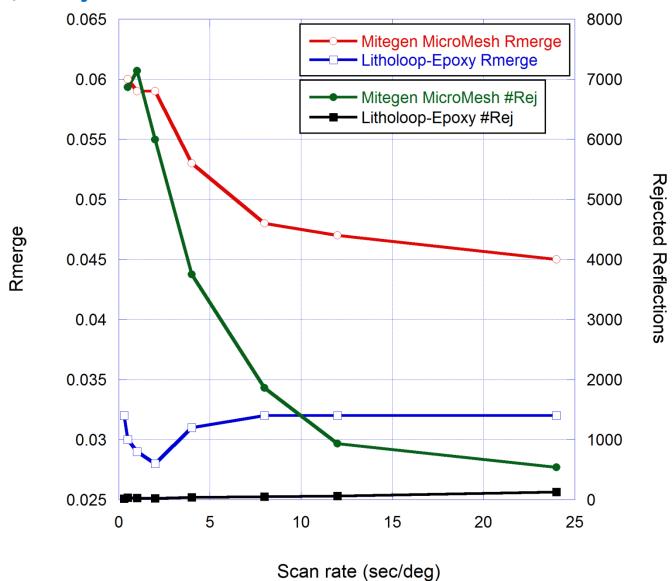
Lysozyme results

	Mitegen HT Kappa0 -45	Mitegen MicroMesh Kappa0 -45	<u>Mitegen DT</u> Kappa0 -45	Mitegen LD Kappa0 -45	
	таррас то	тарраб 16	таррас то	Таррао 10	
Overall Linear Rmerge	0.033 0.034	0.064 0.073	0.022 0.023	0.038 0.023	
Lin Rmerge <50-3.64>	0.023 0.021	0.045 0.034	0.017 0.017	0.033 0.018	
Lin Rmerge <3.64-2.89>	0.022 0.018	0.046 0.039	0.015 0.015	0.032 0.015	
# Rej Scale.log	16 25	1988 45	137 76	612 39	
lavg <50-3.64> /Avg Error	816/11 573/8	331/5 256/5	1600/21 1505/20	1142/15 945/12	
Mosaicity Range	.1924 .1719	.1922 .1417	.2630 .2935	.2223 .2025	
Total Reflections	135888 135044	134153 116675	133658 135472	135421 137249	
Unique Reflections	26695 26686	26700 26734	26840 26804	26758 26755	
% Complete <1.36-1.34>	20.7 27.2	35.9 6.9	36.4 44.7	39.5 42.7	
Mean I/sigma	46.7 35.7	27.5 18.5	60.2 51.1	52.8 50.6	
I/sigma <1.36-1.34>	2.9 2.3	1.1 1.4	6.7 4.0	4.5 4.4	
Overall Redundancy	6.7 5.9	5.6 5.5	6.3 6.1	5.8 5.6	
Loop thickness body/apertu	re 18/18	10/10	25/10	25/10	



Lysozyme results

	Mitegen Microloop		Hampto	Hampton Cryoloop	Litholoop N	Litholoop Mesh		Litholoop	
	Kappa0	-45	Kappa0	-45	Kappa0	-45	Kappa0	-45	
Overall Linear Rmerge	0.051	0.038	0.040	0.035	0.023	0.024	0.021	0.021	
Lin Rmerge <50-3.64>	0.037	0.022	0.033	0.026	0.018	0.018	0.015	0.017	
Lin Rmerge <3.64-2.89>	0.038	0.020	0.031	0.024	0.015	0.015	0.014	0.014	
# Rej Scale.log	351	35	187	167	57	41	42	29	
lavg <50-3.64> /Avg Error	491/7	395/6	683/9	787/11	1069/14	1158/15	1267/16	1047/14	
Mosaicity Range	.1926	.2023	.1822	.2123	.2227	.2224	.2324	.2225	
Total Reflections	135843	133315	138845	138165	135134	137357	135267	134629	
Unique Reflections	26696	26675	26740	26768	26683	26741	26679	26702	
% Complete <1.36-1.34>	30.2	23.1	32.1	45.4	40.3	47.6	28	36.8	
Mean I/sigma	35.8	31.8	48.0	41.3	52.6	51.2	59.5	54	
I/sigma <1.36-1.34>	1.8	1.7	3.4	2.6	4.6	4.4	5.2	4.6	
Overall Redundancy	6.2	5.8	6.3	5.8	5.7	5.6	6.3	5.6	
Loop thickness body/apertu	re 10/10)	20/20		25/25		25/25		



What can you do to minimize motion for already mounted samples?

- Align loop along edge and/or convex side to minimize movement
- Time-average lengthen scan rate to average out motion
- To confirm time-averaging
 - Lysozyme experiment as a function of scan rate
 - Mitegen MicroMesh loop
 - Use attenuation to maintain similar counting statistics
 - Litholoop coated with epoxy for instrument baseline
- Only one crystal for each series
 - Radiation damage not a significant contributor to results
- Report Rmerge and #Rejected reflections vs scan rate

Rmerge, #Rej vs scan rate

Time-averaging results

- Increasing time 1→24s/deg reduces overall Rmerge (.059 vs .045)
- Total number of reflections rejected decreased by factor of 13
- Data were still improving at a rate of 24sec/deg
- Time-averaging helps but not as much as a stiffener or thicker loop would have

Does any of this matter to real structure solution?

- At present, the answer is "inconclusive"
- Lysozyme structure was solved via molecular replacement using the Mitegen MicroMesh data with 7100 rejected reflections
 - There were only small differences in the maps between motion and no motion data
- CCD detectors have a 1-2% Rmerge baseline due to calibration errors
 - Calibration errors increase as the spot size decreases
 - 1% or larger at 75um;
 - 0.3% at 300um (best case)
 - If loop motion error contributions are in this range, they may simply be absorbed
- Attempts are ongoing to collect and analyze anomalous data under loop motion conditions

Summary

- Silicon testing results indicate that large variations in integrated intensities are possible at specific loop orientations
- Lysozyme results indicate that loop motion can occur under "normal" data collection conditions
- Thicker loops (25µm) perform better than thinner loops
- Both the protein crystal and frozen solvent can aid in stiffening loops
- Loop stiffness can be minimized by adding grease or epoxy for reinforcement
- Data degradation can be lessened by preferential loop orientation or timeaveraging

Co-authors from the Structural Biology Center

- Frank J. Rotella
- Norma Duke