

SCU1 Experience at 1-ID

S. D. Shastri

Materials Physics and Engineering Group - APS

APS Monthly Technical Working Group Meeting Jan 19, 2017

Superconducting Undulators (SCUs) at APS—Installations

- To elevate energies of x-ray harmonics by providing large fields at small periods and at more open magnetic gaps (out of beam-vacuum).
- SCU0 prototype for 6-ID-D in 2013-1 (until 2016-2)
 - $-\lambda_{u} = 1.6 \text{ cm}$, N = 21, L = 0.33 m
 - Ivanyushenkov et al., PR-STAB 18, 040703 (2015)
- SCU1 (or SCU18-1) for 1-ID in 2015-2
 - $-\lambda_u$ = 1.8 cm , N = 60 , L = 1.08 m , K_{max} = 1.62 (B $_{max}$ = 0.96 T, 450 A) , 9.5 mm gap phase errors \sim 8–10° at K_{max}
 - Ivanyushenkov et al., PR-STAB (submitted, 2016)
- SCU18-2 for 6-ID-D in 2016-3
 - same as SCU1 parameters, with improvements phase errors ~ 2° at K_{max}
- H-SCU planned for 7-ID in 2017-3
 - helical, $\lambda_u = 31.5 \text{ cm}$, N = 38 , L = 1.2 m

High-Energy X-Rays (> 40 keV)

Current APS 1-ID techniques:

- HEDM high-energy diffraction microscopy (ff- and nf-)
- μ-CT, e.g., voids, cracks
- ST (scattering tomograpy)
- SAXS
- PDF, WAXS
- resonant scattering near heavy-element K edges

Why high-energy x-rays?

Interaction properties:

- low attenuation
- small scattering angles
- accessibility of high Q
- improved validity of Born approximation (no multiple scattering)

Enables:

- extreme environments, e.g. thick walled containment: furnace/high-pressure cells
- scattering from bulk / away from surface in thick or high-Z samples
- high direct-space resolution

 $\overrightarrow{\mathrm{x_d}} = \mathrm{L}_2$

SCU1 – PMUs Comparison at 1-ID

3.3 cm PMU 1.8 cm SCU (since 6/2015)

1-ID measured flux through 0.5 x 0.5 mm² at 27.5 m monochr. b.w. $\sim 0.06-0.2$ % over 40–140 keV

SCU1 at APS 1-ID

122.7 keV , n = 11 , 448.2 A

TWG Meeting, APS

Jan 19, 2017

S. D. Shastri

Power

- U33 (i.e., UA) at 11 mm gap, K = 2.6
 - 5.2 kW total
 - 240 W/mm² at 25 m
 - $-1.2 \text{ kW in } 3 \times 2 \text{ mm}^2 \text{ at } 25 \text{ m}$
- SCU1, K = 1.6
 - 2.9 kW total
 - 220 W/mm² at 25 m
 - 1.0 kW in 3 x 2 mm² at 25 m
- Comparable thermal loads on Si Laue-monochromator

APS 1-ID High-Energy Bent Double-Laue Monochromator (40–140 keV)

JSR **9**, 317–322 (2002)

- cryogenically cooled (LN2)
- sequential Rowland conditions
- high flux, > 10 times over flat crystals, without increase in energy spread ($\Delta E/E \sim 10^{-3}$)
- brilliance/phase-space preserving (compensation effect)
- fully tunable
- in-line / fixed vertical offset

Going Towards APS-U (1-ID and HEXM Beamlines)

Past PMUs / Present SCU1 / Future SCU-HEXM

Future SCU-HEXM vs SCU1:

- 3.6 m long, 1.7 cm period, 6 GeV
- 2x flux in central cone
- 10x flux density
- 300x brilliance

SCU1 Usage and Reliability/Downtime Since 2015-2

- Usage in 1-ID experiments: SCU1 > 90%, U33 < 10%
- No storage-ring beam losses caused by SCU1
- SCU1 quenches without stored beam loss—once, downtime few hours.
- SCU1 quenches accompanying beam losses from other causes (~ 24%).
 No impact (transparent) as SCU1 recovers in parallel with re-injection.
- Controls issues—once, 12/19/2016. Communication loss(es) between various components resulted in SCU being sent to 0 A current. Few hours lost overnight. Notifications now implemented.

Overall excellent reliability/availability.

EPICS Control Interface for Beamline

PMU control

SCU control

EPICS Control Interface for Beamline

SCU control

🔳 SCU1Control.adi (on vivaldi.xray 🗔 🗖 🛛 SCU ID Control Sector 1 DS ID SCU1_1.8cm Software Version: 1.0 426.9287 Readback Desired 426.800 80.725 Current (A) Energy (keV) B Fields (G) Readback: Set Point: 9288.621 off On Power Supply: ON User Access Mode : User Photon Power (KW): 2 9130 Harmonic Select (1-12): Beam Energy Adj. (GeV): Bl. Comm. Limit (A): 450,000 Hi Main Curr Limit (A): 500.000 Status Messages: Requested Main Current OK Curr (=) Energy Conversion OK DSCU Energy/Field Plot шUser

- To calculate w/o ramping
- Ramping accuracy PV

Current Readback Value Fluctuations

SCU control

Readback fluctuates:

- actual current is stable
- from noise in DC-CT signal
- − over range ~ 0.8 A
- off-centered about requested value, +0 / -0.8 A
- recently improved

Makes scanning tricky:

- EPICS Busy/Done Record with ramping-accuracy-PV set carefully, e.g., to 0.6 A
- current steps no less than 0.5 A
- adequate positioner settling time, e.g., 1 s

Current Scan with Monochromator Fixed

X-Ray Beam Motion with SCU Current

- Beam moves ~ 0.5 mm at white-beam slits (27 m) over 200–450 A, with most taking place at 350–400 A.
- Horizontal only—vertical is steady (< 20 μm).
- Not surprising given 2nd field-integrals of tens of G cm² and short 1 m device.
- At 1-ID-E end-station (sample at 70 m), horizontal motion can be over 1 mm.
- Results in realignment time during operations (energy changes).
- Can re-steer, but takes XBPMs out of orbit feedback, requiring current-scan for recalibration of XBPM offsets.
- Strategy: Use SCU field 2nd-integral correctors to preserve electron angular trajectory, and hence, photon beam. Automated look-up table.

Full Beam Profiles (P. Kenesei)

- asymmetry visible
- 1 mm x 0.5 mm FWHM at 36 m
- CoolSnap 4K interline CCD LuAG:Ce 25 μm scintillator 1 μm pixels

Current Tuning (P. Kenesei)

Current Tuning (P. Kenesei)

Profiles Through Aperture (P. Kenesei)

Profiles at 36 m through 0.5 x 0.5 mm² at 27 m

Questions