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Saturday and Sunday Presentations

* Linac Coherent Light Source

« SNS Power Upgrade

« Transmission Electron Aberration Microscope
SNS Long Wavelength Target Station

High Flux Isotope Reactor Target Station Il
Linac-based Ultrafast X-ray Source

National Synchrotron Light Source Upgrade
Linac Coherent Light Source Upgrade
Green-Field Free Electron Laser

« Advanced Photon Source Upgrade

« Keeping the Advanced Light Source at the Cutting Edge



ADVANCED PHOTON SOURCE

ACCELERATOR SYSTEMSDIVISION
Seminar Announcement

SPEAKER: Kwang-Je Kim
Associate Division Director

TITLE: Greenfield FEL

DATE: Thursday, March 27, 2003
TIME: 1:30 p.m.

LOCATION: A1100

A fourth-generation light source based on high-gain free electron lasers (FELS) is becoming a
reality! The Linear Coherent Light Source (LCLS) project at SLAC is funded for engineering
design and is scheduled to turn on in 2009. The TESLA FEL at DESY has also received a
positive recommendation for construction to be complete by 2012. These facilities will
produce intense, coherent x-ray beams with unprecedented brightness and time resolution.
Thistalk is about a"Greenfield FEL," a high-gain FEL facility genuinely optimized for user
operation taking into account lessons learned from the first FEL facilities-what will be its
requirements and what do we need to do to build it. This talk was given at the BESAC
Subcommittee Meeting on the BES 20-year road map, February 22-24, 2003.
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Advanced Photon Sourcé

Upgrade Path
Defining the Sate-of-the-Art

Presented to BESAC Subcommittee
on 20-year Facilities Roadmap

February 23, 2003
By J. Murray Gibson
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State-of-the-Art 3'9 Generation Science
INn 20 Years?

Individual nanoscale objects can be observed in real-time

Electronic, dynamic and magnetic properties of asingle
nanostructure can be measured

A few atoms can be chemically identified

A full dataset for protein structure analysis can be collected in
less than a second

X-ray imaging of objects with nmresolution is routine



History of Innovation

« Top-up operation Canted
Undulators
mA ' II.
—LoW emi.ttance
—Sable optics

* Improved beam stability

APS Horicontal and Yerlical wer Supphy Sualey
Baam Posieon Stability Hestary (0.096 Hz - 370 Hz) ".||-|II-|I 1T st

- driven by bio users




Guiding principles for next 20 years

e The mission of the Advanced Photon Source isto deliver
world-class science and technology by operating an
outstanding synchrotron radiation research facility accessible
to a broad spectrum of researchers

» Need for 3'd Generation Sources will not go away in 20 years,
and our user base will grow to ~10,000
— 4% generation is revolutionary, but does not supercede 3 generation
 Our users and staff should be connected with the next
generation capabilities
— short pulses (fs), higher coherence.
e APS capabilities must increase continually

— over 1000 times improvement in “useable” brilliance possible within
20 years

e Maintain strong partnerships (such as CATs), and open access
for general users

Defining the state-of-the-art in 39 generation x-ray sources and science



APS phases of innovation in the
next 20 years

Phase | — Maximizing Beamline Operations
Phase || — Maximizing Source Capabilities
Phase |11 — Next Generation Facility

Phase |V — Super Storage Ring

— Phases |, 11 and IV each represent at least an
order of magnitude increased useable brilliance



APS Upgrades Timeline

2003 2013 2023
| | |

Phase | (2004-2012)

Phase || (2004-2014)

Phase |1 (2010-2023)

Phase IV (2@82-2020)

1 year shutdown
Preconstruction ~2018




Phase | — Maximizing Beamline
Operations (2004-2012)

10 beamlines to be constructed in the next 8 years
(5 years per beamline)

— more than 1 beamline possible per beamport

10 beamlines to be upgraded

— most likely BES sectors (~26 beamports)

Construction

— APS and partner user responsibility
Operation

— APS responsibility



The Importance of the Science

New capabilities will be optimized (in
parallel with optimized sources during
Phase |1)

All beamlines will be well operated and
accessible

Quantity and quality of output will increase

Science Advisory Committee oversees
choices



Two kinds of beamlines:.
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Beamline operation support

Average No. of Publications/year/sector
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leverages science

Average Number of Publications/year/sector vs. On-site Staff*

No. of On-site Staff (Admin. & Tech.)



Readiness for Phase |

Beginning now but limited by resources

Capital resources and manpower for operations

— our current staff level permits insertion device
development and some beamline design assistance ~1/3
beamlines

— operational staff support must grow by ~100 people
(+20% current operating budget)

Continuing incremental improvementsin
detectors, optics will occur during Phase |

VUV-FEL facility isa special beamline -



APS“LEUTL” FEL beamline

* Allows accelerator physics activities such as
gun development for 4™ generation

— demonstrated SASE at ~100nm
— operates independently in non-top-up mode
 VUV-FEL user facility for ~$10M

Currently serving asingle user:

UV single-photon ionization
Proposed facility offers better capabilities,
mor e users and complete independence from SR

e e



Phase | — Cost, Schedule, Scope

and M anagement

Estimated cost $160M over 8 years
— average 2-3 new beamlines per year, up-front weighting
on new beamlines
Funds for new instruments should be Y2 inside, 12
outside facility (for partnering)
— With research funds outside

Operational funds should be inside facility
(~$20M extrain today’ s dollars)

SAC role, external peer review also on partner
proposals



Phase |1 — Maximizing Source
Capabilities (2004-2014)

Innovative undulators, front ends and related
components
Higher brilliance, optimized for application

mprove front ends and high-heat |oad optics for
nigher current operation

— APS operates at 100mA, would reach 300mA at end of
Phase ||

Increasing brilliance by more than an order of
magnitude

Continuing accelerator improvement
— even greater improvement beam stability




Science Example -Extended straight section and melastlc X- ray

spectroscopy

50m

[

CURRENT STRAIGHT SECTION

10m

1 s N o O s

Fe partial density of states (1/eV/at.vol)

UNDULATOR "A” UNDULATOR "A" UNDULATOR "A"

PROPOSED EXTENDED STRAIGHT SECTION

IONG STRAIGHT SFCTION WITH THRFF UNDUIATORS "A™ AND ONF SUPFREONDUCTING UNDUTATOR

* The heme doming coordinate in myoglobin is directly involved in

the oxygen-binding reaction

 Doming modes are expected in the range of 6-8 meV

« With a high enough resolution it becomes possible to study the
influence of addition of ligands to the functional behavior of

proteins
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On-Axis Brilliance (ph/s/mrad?/mm?/0.1%bw)
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Science example - magnetic studies with soft x-rays

Brilliance Tuning Curves for Elliptically Polarized Devices
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Advantages of high energy rings.
* Low emittance
» High beam stability
* Large energy tunability

= Superior performance

APS (7 GeV, 100 mA):10 m long straight section, A =16.0 cm, N = 62
APS (7 GeV, 100 mA):5 m long straight section, A =12.8 cm, N = 18 (current device)
ALS (1.9 GeV, 400 mA): 2 m long straight section, A =5.0cm, N = 37



Pol ari zation-dependent spectroscopy

Helicity dependent X-ray emission provides information concerning
spin polarized density of bulk occupied states

Photoemission Microscopy

Spatial resolution target of 2 nm

eMagnetic contrast:
e Domain imaging
e Ground states in nanoscale systems
e Interactions in particle arrays
 Finite size effects
e Chemical contrast
» Self-assembled systems
e Segregation
» Local electronic structure
e Buried layers (~5 nm)
= Soft x-ray advantages:
e High magnetic contrast
» Access to TM, RE, semiconductors



Brilliance [phs/s/mrad 2/mm %/0.1%b.w.]
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Readiness for Phase |l - current R&D
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Assumed APS storage ring parameters: 3.5 nm-rad, 1% coupling, 100 mA



Phase || — Cost, Schedule,
Scope and M anagement

e $100M over 10 years, ramping up from
$5M per year in the first year, to $20M in
the last year

 APSwill remain at the state-of-the-art in
Insertion device design

— Connection with LCL S and other 4t generation
SOUrCES



Phase |I1 — Next Generation User
Facility (2010-2023)

e By 10 yearsfrom now user community will
approach 10,000

o APSwill be primary 3rd generation hard x-
ray source, with great capabilities and easy
accessibility

* Need to develop beamlines and automation
to reach next level



The Importance of the Science

e Current performance islimited by
beamlines — optics, detectors

— One or two orders of magnitude improvement
available In many cases
o Automation offers both remote access,
better user support and new experimental
capabilities



Detectors and Optics Limit

Performance

Hot-rolled
Al

Atomic Resolution Flourescence Holography

¥-ray Beam

= 10-100 times decrease in

Tomorrow's Sphevical

Map grain orientation and stress in data-collection time with e omorrow's Sphericat

improved detector

real samples 10* um?3at 1 um resolution
takes 54 hoursto collect data
CCD read-out time = 52 hours



Automation

* Not just remote access and user support
* Precision and control exceeds human




Automation leads to new science

Nanoprobe

— Scan real and reciprocal
space in nanovolumes

Adaptive opticswith | e
feedback

Multi-parameter
“smart” scans

Hard X-ray Nanoprobe | sz e

+» Unique, versatile instrument to study individual

_-5!'__-:'.'——— ——— nanostructures (30 nm spatial resolution)
o gy o R
= JI ' | < Quantitative atomic-scale structure, strain, orientation
A imaging
L

+ Sensitive trace element and chemical state analysis

+¢ Ability to penetrate overlayers, environments, fields




Readiness for Phase |11

e Thisbuildson Phasel and |l for acomplete
reinstrumentation of all beamlines.
Incremental developments will be going
through Phases | and Il. Education and
outreach will be facilitated by an Institute
for X-Ray Science and Technology,
Including a theory component.



Phase ||| — Cost, Schedule,
Scope and M anagement

Estimated cost for enhancements of beamlinesis

$400M

Funding shou
construction,

d include partner usersin
proposals and SAC oversight

Center for X-

Ray Science and Technology

Involved, with partner members

Most construction activities organized by APS,
operation remains APS responsibility

Additional $45M conventional facilities upgrades
will be needed in 20-year period



Phase IV — Super Storage Ring
(2012-2020)

To upgrade user capabilities and maximize value
of embedded infrastructure and community

Reduce emittance by at least afactor of 10

— Lessthan 0.3 nm-rad effective emittance

— Very short lifetime
* Requiresrefined top-up and new injector

Beam stabilization at 10nm level
Requires new storage ring and injector
— New injector offers 4th generation capabilities

Preconcept stage— not yet designed



Super Rl ng 80 Sector L attice

Flexible Iattlce uses eX|st|ng enclosures

use existing BM ports

either
— two short insertion devices
(3 - 4 meters) / double sector
or

— one long insertion device
(up to 12 meters)

— plus one hard bending
magnet source

Proposed
80-sector Lattice

Present, 40-Sector
APS Lattice
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A Py

New ID Source Point
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Sextupoles
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Insertion Device
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Present BM Source Point, |
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Nano-scale Beam Stabilization

Necessary in conjunction with reduced
beam emittance

e Support nanoprobe experiments

e Aggressive attack on
- hoise sources, microhertz to Megahertz

- Improved instrumentation and feedback capability



New Injector Complex

o Several possibilitiesfor injection
— New booster
— LINAC source

— Need high rep rate and emittance x10 smaller
than present booster



LINAC Augmented Light Source

° Fﬂ I nJ eCtI On’ PARAMETER VALUE [ UNITS

. General
low emittance Toul engh @ | m
Cryomodules 34
Energy gain per module 240 MeV
® Offer S 4th gen_ Total beam energy 8.16 GeV
Average gradient 13.6 MV/m
RF system
- pl US ne\N USG Of Operational frequency 1.3 GHz
. . . . Average beam power 800 kw
existing injectors (UV, IR) [san
Charge per bunch 1 nC
Bunches per macropulse 1
APS SASE-FEL Normalized RMS emittance 14 pum
Storage Ring RMS bunch Iength
PAR At injector 10 ps
At exit of linac <1 ps
APS Linac Macropulse repetition rate 100 Hz

Table 1: Primary Linac parameters

Booster
Synchrotron

100 m

I_ Undulator Secondary | Primary Linac

Farm Linac




The Importance of the Science

Offers afactor of more than 10 improved
brilliance to embedded beamline and usar base

Stability will enable higher performance for nano-
beams etc.

New LINAC injector will offer 4th gen.
capabilities, e.g. time resolved

— Secondary LINAC and endstations

— Existing injector liberated for other uses
Possible for special operating mode giving fs
pulses into storage ring experiments



Readiness for Phase |V

 |napproximately 15 years, thiswould provide a
major upgrade in capabilities
— Unlikely that any other APS scale storage ring will be
built in the foreseeable future

» Actual accelerator choices would be mandated by
developments in ERL/FEL aong the way

— Could be connected to green-field FEL
— Leverage leadership for insertion devices



Phase |V — Cost, Schedule,
Scope and M anagement

o Estimated cost of Super Storage Ring
— $350M

o Estimated cost of LINAC construction
— $250M

 Alternate injector approach to replace

booster much less expensive, but does not
offer 4™ gen. or UV/IR capabilities



How the phases are linked
to the Impact

« Multiple increases of more than 10x each phasein
performance
— amost 10,000 times increase in useable brilliance in 20

years

o APSwill define the state-of-the-art and have a
major scientific Impact

e Total investment proposed is ~$1.3B over 20
years, comparable with depreciation cost of APS
(operating budget in that period >$2B)



Conclusion

 Phased upgrade plan maintains APS as premier 3/

generation x-ray storage ring
— 3'd generation sources will not be obsol ete!

e Embedded capabilities and user community in 15
years leads to desire for continually improved and
augmented capabilities

— Connect with 4th-generation capabilities

* Reqguires increased operating budgets for

operational support responsibilities (only ~20% in

today’ s dollars)
Defining the state-of-the-art in 39 generation x-ray sources and science



