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Ferroelectrics vs. Ferromagnets
B
» Ferroelectrics are electric analogue of ferromagnets
* Phase transition with polarization as order parameter
» Below T, have spontaneous electric polarization at zero field
« Unit cell of crystal is non-centrosymmetric (charges separated)
« Switchable under application of electric field

e Often form domain structures - polarized regions with different
orientations

« Differences with magnets: Polarization strongly coupled to strain;

field can be neutralized by charge
P (uCl/cm?)
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Ferroelectrics and Technology
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Suppression of Ferroelectricity in Thin Films
I ——

« Historically, observed
suppression of
ferroelectricity in thin
films

 \What is the cause?

o extrinsic effects -
variable stress,
composition, defects

e “Intrinsic” surface
effect
» depolarizing field

* What is the ultimate
thickness limit, and why?
Is T, suppressed?

Thickness Limit (nm)

See review by T. M. Shaw et al.,
Annu. Rev. Mater. Sci. 30, 263 (2000)
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Depolarizing Field

I ——
Depolarizing field Ej is the electric field

“F D, _ DODDDDTDDDDDD
arising from polarization, which can be 1P IE
partially compensated by ROR0E0COCO0O0

* Free charge at surface/interface from

« Conducting or semiconducting ferroelectric =~ [PPPODDDDODODD
» Conducting or semiconducting electrodes TP E
e Electrodes with “dead layers” geccaoeaeanos
» Charged surface adsorbates
OO0 BTOOUDOE
 Domain formation l : 1 : 11
eee00deedooo

If depolarizing field is uncompensated, T suppression will be
equal to the Curie constant C (for PbTiO,, C = 1.5 x 10° K)
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Approach

I
« Use x-ray scattering to study

ultrathin films during growth 415 — Tetnag, PTO |
and in-situ as a function of Ny A
temperature and thickness

4051 tetragonal cubic

e PDbTIiO, Is an ideal system --
prototypical perovskite
ferroelectric, materials 3051 _
properties known /

« Control strain state by al . 1 . “
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studying coherently-strained " Temperature (C)
epitaxial films on SrTiO,
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ferroelectric paraelectric
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In Situ X-ray / Chemical Vapor Deposition Chamber at 121D
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In Situ X-ray Studies of Chemical Vapor Deposition

Typical PbTiO,
Growth Conditions:

Fluorescence

Substrate temperature Detector

600-850°C

Reactor pressure FTAnion

10 Torr Quartz window
rm

_ | 24 keV
Precursors: %
-ray beam
Tetraethyl Lead Exhaust
Titanium Isopropoxide
Rotary Seal

G.B. Stephenson, et al.,

MRS Bull. 24 (1) 21 (1999) /
u

M.V.R. Murty, et al.,

Appl. Phys. Lett. 80, 1809 (2002)
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In-situ X-ray Characterization of Films Grown by
Metal-Organic Chemical Vapor Deposition (MOCVD)

e Films observed in growth
chamber

» Precise control of film
thickness to sub-monolayer
accuracy

« Equilibrium vapor pressure
controlled over film

- maintains stoichiometry

- crucial for studies at
high temperature

o Canstudy filmsat high T
after growth, avoiding any
irreversible relaxation that
may occur upon cooling to
room T

Advanced Photon Source,
BESSRC beamline 121D-D,
Argonne National Laboratory
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PbTiO, Surface Phase Diagram

* Ac(2x2) reconstruction Temperature (K)

1025 1000 97

Is the equilibrium

surface structure across
the entire PbTiO,
single-phase field.

* Apoorly ordered (1x6)
reconstruction is
observed at PbO
pressures below the
PbTiO, stability line,
and is believed to be a
nonequilibrium Ti-rich
structure.
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Equilibrium Surface Structure of PbTiO,

_ The equilibrium surface is a PbO-terminated,
c(2 x 2) Reconstruction  single-unit-cell layer with an antiferrodistortive
A. Munkholm et al.. PRL 88, structure, ob_tained by 10° oxygen octahe_dral
016101 (2002). rotations. This reconstruction occurs on films
of all thicknesses down to a single unit cell.
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This reconstruction now found in ab intio calculations by C. Bungaro et al.,
cond-mat/0410375 (2004)
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Thickness Control to Sub-Unit-Cell Accuracy
I ——
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» Thickness fringes indicate atomically- Time after Growth Start (s)
smooth intefaces

- Can monitor initial growth by observing ¢  Period of oscillations depends on L;

formation of thickness fringes at L = 0.5, period corresponds to 2
unit cells
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Determination of T, from c-Axis Lattice Parameter

12,
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L (reciprocal lattice units)

C-Axis Lattice Par. (A)

Ferroelectric phase transition identified by
measuring lattice parameter of PbTiO; as
function of temperature

Phase transition is continuous, as predicted
by theory for epitaxial film

T is elevated less than thick-film
prediction, and depends on thickness
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In-Plane Satellite Peaks Observed W 180° Stripe Domains

« Satellites with equal spacings in AQ are

| — 204 |]

observed at PbTiO, reflections with L0 Ul — 01
 No satellites observed around L=0 peaks 0| '
(displacements are in c-axis direction) :
«  Wavevector of modulation is in-plane ot

Counts at 100mA, offset by 1000X

0 0.05 0.1 0.15
H K (reciprocal lattice units)

S.K. Streiffer et al., PRL 89, 067601 (2002)
G.B. Stephenson, et al. 14



180° Stripe Domains in Ferroelectrics

o 180-degree stripe domains:
lamella with alternating polarity

* Experimentally observed in bulk 2o
ferroelectrics (e.g., BaTiOg), but  |Ft | [ [t [} |t ]| [ iV
no previous reports of their
detection in thin films

« Associated with minimization of
the electric field energy
(“depolarizing field”)

« Often assumed that film
conductivity is high enough to
suppress stripe domain formation

, BaTiO,
25( ¢ m)

Y. Cho et al., Jpn. J. Appl. Phys., 38, 5689 (1999)
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Nanoscale 180° Stripe Domains

(a) 12.1 nm, (b) 3.9 nm, 19.2 nm thick PbTiO, film, 201 peak, 509 C
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-

g - 210}
£-0.1 E
E z
3 = =
§ (c) 12.1 nm, (d) 21.1 nm, 2
g 0.1 549 K == 82K 2
& i = SR
> 10
T 0

-0.1 0.1 005 0 0.05 0.1 0.15

K (reciprocal lattice units)

-0.1 0 0.1 -0.1 0 0.1
A H (reciprocal lattice units)

e Under some conditions,

«  See various alignments of stripes from see high-order harmonics
in-plane diffraction « Odd orders strongest =

«  When non-crystallographically aligned, 50:50 ratio of up/down

stripes are parallel to miscut steps _
S.K. Streiffer et al., PRL 89, 067601 (2002)
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Finding T, in Ultrathin Films:
c-axis Lattice Parameter is Difficult to Extract
B

thin film ultrathin film
12.1 nm thick PbTiO, film, 303 peak 2 nm thick PbTiOj film, 303 peak
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Finding T, in Ultrathin Films: Onset of Satellites

0.2
K 5
-0.2
2.8 3.2
H —_ (o]
$ &
* Ferroelectric phase is ¢
stable in three-unit-cell- ‘g
thick film (1.2 nm) with g
T. ~250 °C SR
o EXsitu x-ray
measurements at -153 °C
found no ferroelectric 3
transition in 2 unit cell ~
sample

D.D. Fong et al., Science 304, 1650 (2004)

Film Thickness (unit cells)
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Dependence of T on Film Thickness

e T, determined from onset 700f
of stripes agrees with that 5 600
from lattice parameter rt
|_
e See gradual decrease, then @ 500}
. . =3
abruptdropinT-at3unit &
cells & 400¢
* What causes dependence 2 300}
of T¢ on film thickness? &
@ 200f
©
= 400t @ From satellites
[1] Fromc
0 1 1
10° 10’

_ Film Thickness (nm)
D.D. Fong et al., Science 304, 1650 (2004)
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Why is 3-Unit-Cell Thickness Required for Ferroelectricity?
T
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1 unit cell 2 unit cells 3 unit cells
3 unit cells is minimum thickness for film to contain TiO, or PbO layers
having the bulk PbTiO, nearest-neighbor environment

D.D. Fong et al., Science 304, 1650 (2004)
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Conclusions and Qutlook

 In situ x-ray scattering studies provide understanding of
synthesis and phase transitions in ultrathin ferroelectrics
« Equilibrium surface structure of PbTiO,
 MOCVD growth mechanisms
« Sub-monolayer thickness control
» Nanoscale thickness effects on phase stability
e 180° stripe domain formation
 Effects of mechanical and electrical boundary conditions

« Competition between polarization, depolarizing field,
epitaxial strain, domain formation, intrinsic surface effects,
and interface compensation by charged species produce
unexpectedly rich behavior in ultrathin ferroelectric films

* We have just begun to understand these phenomena to the
point where we can predict and control them

G.B. Stephenson, et al. 21
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