

Resonant X-ray Scattering

Michel van Veenendaal Advanced Photon Source, Northern Illinois University

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Synchrotron-Related Theory

SRT is a joint program between Northern Illinois University and the Advanced Photon Source

Two permanent staff members: Michel van Veenendaal (NIU/ANL) Roland Winkler (NIU/ANL)

Two postdocs (three from 1/2006): Ken Ahn (APS) Serkan Erdin (NIU)

parttime: Art Fedro (Prof. Emeritus NIU)

http://www.aps.anl.gov/Experimental_Facilities_Division/Synchrotron_Related_Theory

Advanced Photon Source

- Provide theoretical support for experimental program at the APS
- Establish a link between experiment and theoretical models
- Independent theory to create pathways to new experiments
- Inspire experimentalists to look in new and exciting directions

X-ray Scattering

Structure:

crystal structure magnetic structure orbital ordering

Inelastic X-ray Scattering

Science and

echnology

Excitations:

Charge, magnetic, collective excitations, phonons, structure factors

Office of Science

U.S. Department

of Energy

Transition metals: $2p \rightarrow 3d$ (500-1000 eV), $1s \rightarrow 4p$ (several keV), $3p \rightarrow 3d$ (tens of eV)

Rare earths: $3d \rightarrow 4f$ (800-1500 eV), $2p \rightarrow 5d$ (several keV).

Advantages: chemically selective, sensitive to magnetic and orbital ordering

How does $Nd_2Fe_{14}B$, one of the strongest magnets, work?

Coercivity: the magnetic field need to reduce the magnetization of a fully saturated sample to zero

 Fe_3O_4

magnetite

Sintering and defect pinning

D. Haskel, J. C. Lang, Z. Islam, A. Cady, G. Srajer,

M. van Veenendaal, P. C. Canfield accepted for publication in Phys. Rev. Lett.

$Nd_2Fe_{14}B$

Interaction between the iron (Fe) and the rare-earth ions (Nd)

Nd site-specific hysteresis loops

Use two diffracting conditions to separate Nd(1) and Nd(2) magnetic sites

U.S. Department

of Energy

Nd (1)

Nd (2)

Resonant Inelastic X-ray Scattering

Inelastic X-ray Scattering

Science and

Fechnology

Resonant Inelastic X-ray Scattering

Electronic excitations: Charge, magnetic, collective excitations

Office of Science

U.S. Department

of Energy

Pro and Cons of RIXS

- Bulk sensitive
- Chemically selective, but without core hole in final state
- Measures q,ω dependent valence excitations
- Low cross section (even with enhancement)
- Interpretation not trivial

Not all RIXS's are created equal

(b) *L*-edge RIXS in transition-metal compounds

XAS intermediate state

"XPS" intermediate state =>Satellite structures

11

- Low Energy Electronic Excitations in the Layered Cuprates Studied by Copper L₃ Resonant -Inelastic X-Ray Scattering

G. Ghiringhelli,¹ N. B. Brookes,² E. Annese,³ H. Berger,⁴ C. Dallera,¹ M. Grioni,⁵ L. Perfetti,⁵ A. Tagliaferri,¹ and L. Braicovich¹

FIG. 3. Upper panel: RIXS spectra of $Sr_2CuO_2Cl_2$ measured at grazing and normal incidence with V and H polarizations ([GI,V], [NI,V], [NI,H]). Bottom panel: calculated spectra for the same scattering geometries. Inset: experimental geometry, where $\beta = 70^\circ$ is the scattering angle and $\alpha = 0^\circ$ (80°) is the incidence angle in the NI (GI) configuration.

L or M-edge RIXS in transition-metal compounds

Office of Science U.S. Department

of Energy

Exact Solutions

- Strength zero-loss line
- Spin-flip processes or single magnon excitations
- Detailed angular and polarization dependencies

14

RIXS on Cu²⁺ ion

 $3z^2 - r^2 \downarrow 3z^2 - r^2 \uparrow x^2 - y^2 \uparrow$ $yz/zx\downarrow yz/zx\uparrow$ xy^{\dagger} 0 • Strong dependence of 45 spectral weights φ $(\theta = 90^{\circ})$ 90 • No spin flip 90 θ 45 $(\varphi=90^{\circ})$ 0 90 45 φ $(\theta=0^{\circ})$ 0 0 45 θ $(\varphi=0^{\circ})$ 90 1.5 2 0.5 0 Energy [eV] **Office of Science**

U.S. Department of Energy

