

... for a brighter future

Outfield ERL Option and Supporting R&D

A U.S. Department of Energy laboratory managed by The University of Chicago

Michael Borland Operations and Analysis Group Accelerator Systems Division December 13, 2006

An "Outfield" ERL Option (G. Decker¹)

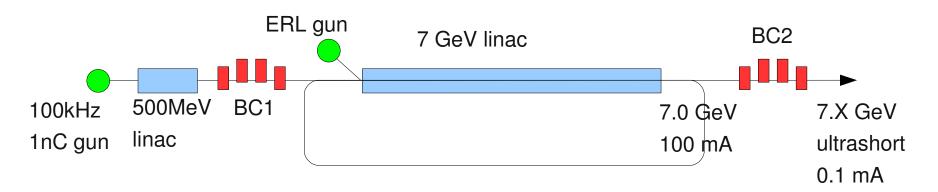
Advantages:

- Linac points away from APS² to give straight-ahead FEL hall³
- Beam goes first into new, emittancepreserving turn-around arc⁴
 - Potential for many new beamlines
- Avoids wetlands etc. by using narrow corridor for linac and return line

Issues:

- Big, expensive
- North turn-around should be *larger* than shown
- No place for very long undulators
- Requires some changes to the ring

¹G. Decker, "APS Upgrade External ERL Option," 9/27/06.


²M. Borland, "ERL Upgrade Options and Possible Performance," 9/18/06.

³M. Borland, "Can APS Compete with the Next Generation?", May 2002.

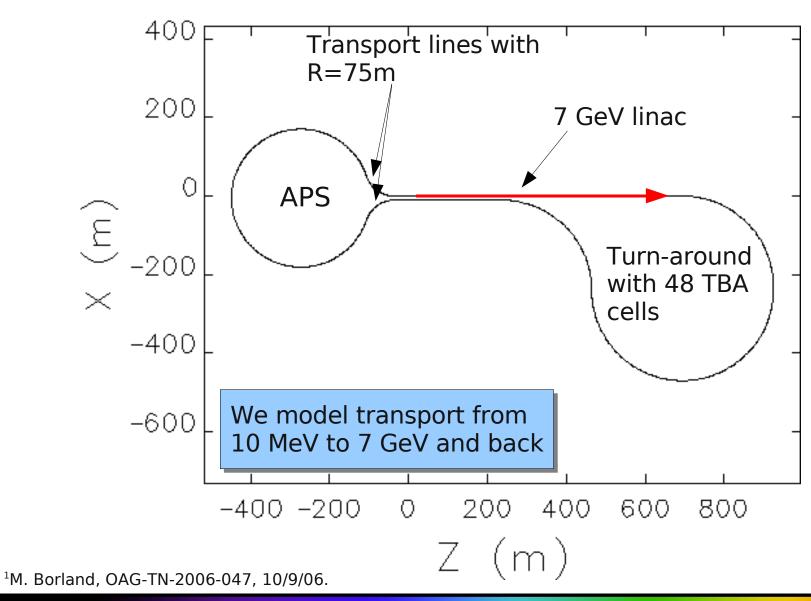
⁴M. Borland, OAG-TN-2006-031, 8/16/06.

Ultrashort Mode with Second Gun

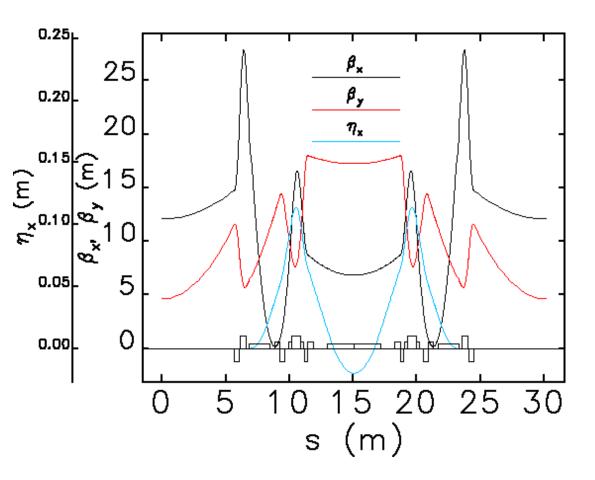
Bazarov¹ suggests that ultrashort pulses should be delivered with a separate gun to a separate user hall

- Due to low repetition rate of high charge gun, don't need energy recovery
- Limitation on average current is from beamloading
- Advantage: ERL runs normally for rest of user community
- Disadvantage: must build new beamlines for timing users.

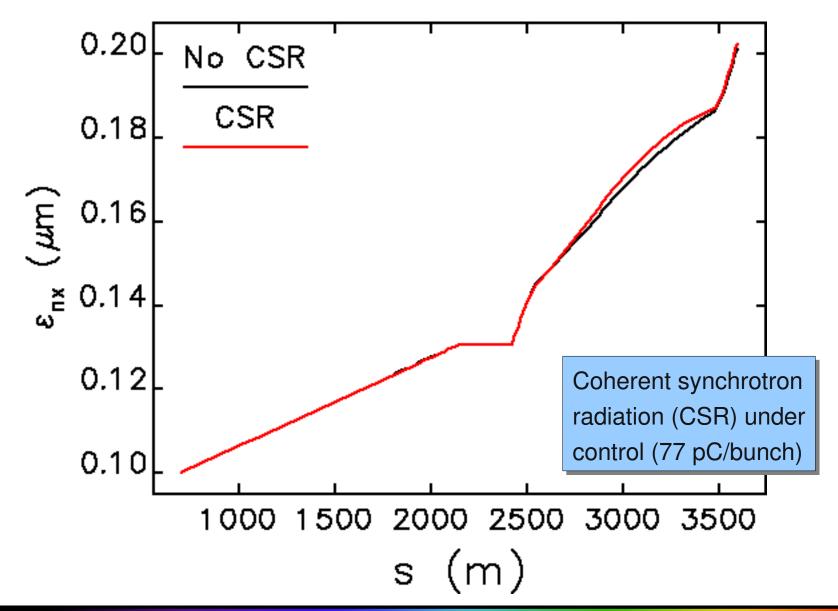
¹I. Bazarov, private communication.


Required Ring Changes¹

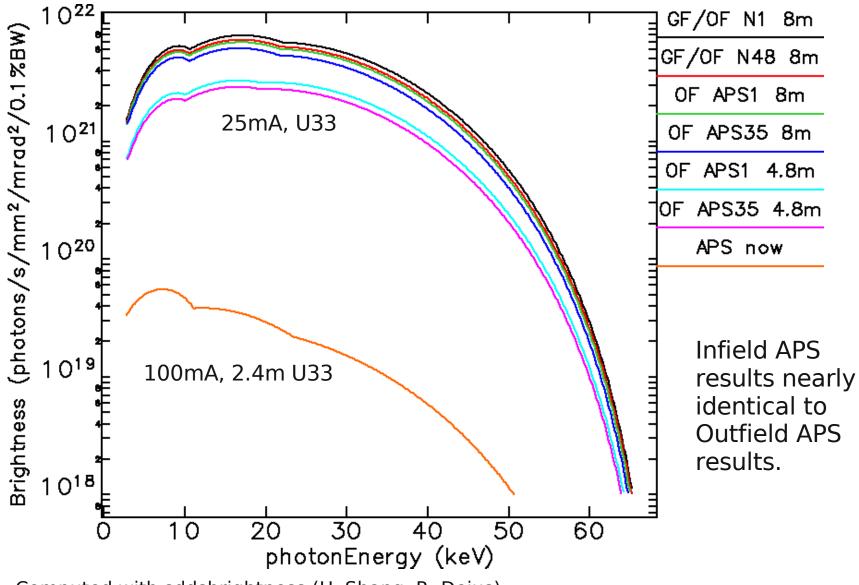
- All required changes are in Zone F (no beamlines)
- "Significant demolition" of Zone F shield wall required
- The ERL input and output transport lines will use straight sections now occupied by rf cavities
- We want to keep the cavities in the ring to allow stored beam operation
 - During commissioning period
 - For operational flexibility after commissioning
- Rf cavities can be relocated to other straight sections
 - Requires some new waveguide penetrations
 - Requires lengthening those straight sections
 - New/modified vacuum chambers and supports
 - Beam emittance won't be as good as before.


¹G. Decker, "APS Upgrade External ERL Option," 9/27/06.

Realization of Decker's Outfield ERL Concept¹



Arc Design for Turn-Around



- Isochronous, achromatic tripletbend cells
- Average radius 230m
- 10 m straights (like APS ring upgrades)
- Excellent emittance preservation
- Four sextupole families for beam loss control

Outfield ERL Tracking Results (7 GeV Portion)

Brightness Comparison for High Coherence Mode

Computed with sddsbrightness (H. Shang, R. Dejus).

Most Important R&D Topics

- Gun design and low-energy beam transport
 - For now we've assumed values predicted by Cornell simulations¹
 - Simulations at JAERI show comparable results²
- Cathode lifetime
 - Present-day cathodes can't sustain 100 mA for operationallyconvenient length of time
- ERL performance is almost certain to be limited by these factors
- More in next talk.

²R.Hajima and R. Nagai, NIM A 557 (2006) 103-105.

¹I.Bazarov and C. Sinclair, Phys. Rev. ST Accel. Beams 8 (2005) 034202.

Linac R&D Topics¹

- Linac superconducting cavity design and fabrication
 - Required gradients (20 MV/m) and Q's (10¹⁰) are achievable
 - Total power dumped at 2 K is 16 kW
 - Higher gradients would reduce length, but increase cryogenic power
 - Higher Q's would reduce cryogenic power
- Cryogenics
 - With present technology, \sim 16 MW cryogenic plant required
 - Better cryoplant design may be possible and might pay off²

²M. White, private communication.

¹A. Nassiri, "ERL RF Systems", MAC Review, 11/15/06.

Linac R&D Topics¹


- Linac cavity parasitic mode damping
 - Need dampers to remove energy from parasitic cavity modes
 - Reduce parasitic heat loss at cryogenic temperatures
 - Increase current threshold for beam break-up
 - Challenges are power handling and compactness
 - High cavity fill factor can reduce length and conventional facilities costs
- Linac optics design²
 - Optics and beam control issues are manageable
 - We have good solutions already.

²M. Borland, OAG-TN-2006-041, 9/17/06.

¹A. Nassiri, "ERL RF Systems", MAC Review, 11/15/06.

Multipass Beam Breakup

N. Sereno, Univ. of Illinois Urbana Ph. D. Thesis, 1994.

Initially on-axis beam gets a small kick from HOM.

Beam returns with large offset that dumps more energy into the HOM.

Beam Instabilities

- Beam break-up appears manageable^{1,2}
 - Damping of parasitic modes
 - Stagger-tuning of cavities
 - Proper linac/external optics design
 - A detailed APS-specific analysis needs to be performed
- Ion trapping³
 - Continuous trains of electron bunches at 1.3 GHz required to reach high current
 - These bunches attract residual gas ions, which can then disrupt the beam
 - Not a problem at APS, but ERL beams are much smaller.

³G. Hoffstaetter, private communication.

¹S. Gruner and M. Tigner eds., CHESS Tech. Memo 01-003.

²N. Sereno, "Beam Breakup in ERLs," 11/2/06.

Beam Loss Issues^{1,2}

- Possible problems include
 - Inefficient energy recovery
 - Cryogenic load in linac
 - Radiation hazard to users
 - Radiation damage to equipment
 - Catastrophic damage to equipment from beam strike
- APS injector delivers a mere 10 nA
 - Efficiency of charge transfer is 80 to 90%
 - "Maximum Credible Incident" is a 44 nA loss at one spot in ring
 - 11 rem/hour radiation outside shield wall
 - Even 1 PPM loss from 100 mA ERL corresponds to 100 nA
- Should we just run and hide from the ERL?

¹CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06. ²M. Borland and A. Xiao, OAG-TN-2006-052, 10/16/06.

Continuous Beam Loss Mechanisms¹

- Beam halo, from many sources
 - Space charge
 - Scattered drive-laser light
 - Field emission
 - Gas scattering
 - Touschek scattering
 - Non-linear optical elements
- These are either
 - Present (mostly) at low energy
 - Controllable through proper design
- If we can collimate effectively at low energy, we may find losses are controllable
- Initial results show only Touschek is significant, but can be controlled^{2,3}.

³M. Borland, "Comparison of ERL Options and Greenfield ERL," MAC Review 11/15/06.

¹CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06, and references therein.

²M. Borland, "ERL Parameter Review and Physics Issues," MAC Review 11/15/06.

Conclusion

- An ERL external to the APS provides many advantages
 - Revolutionary x-ray brightness and coherence
 - Expansion to new beamlines
 - Straight-ahead option for short-pulse applications (e.g., FEL)
- We have basic designs that appear to deliver on these promises
- R&D required on many topics, including
 - Magnet design
 - Impact on stored beam mode (e.g., emittance)
 - Control of beam losses
 - Control of beam break-up and ion trapping
 - Linac cavity design, including cryoplant issues
 - Injector emittance
 - Cathode lifetime.