

Planned Beamline Developments at NSLS-II

SC2.4 Experimental Facilities Subcommittee

Mark Beno, Argonne National Laboratory
Zahid Hussain, Lawrence Berkeley National Laboratory
Jörg Maser, Argonne National Laboratory
Piero Pianetta, Stanford Linear Accelerator Center

Experimental Facilities Overview

Steve Dierker, Qun Shen NSLS-II CD-3 DOE Review September 30 – October 2, 2008

NSLS-II Design Features

Design Parameters

• 3 GeV, 500 mA, top-off injection

Circumference 791.5 m

• 30 cell, Double Bend Achromat

• 15 high-β straights (9.3 m)

• 15 low-β straights (6.6 m)

Novel design features:

- Damping wigglers
- Soft bend magnets
- Three pole wigglers
- Large gap IR dipoles

Ultra-low emittance

- ε_x, ε_y = 0.6, 0.008 nm-rad
 Diffraction limited in vertical at 12 keV
- Small beam size: σ_v = 2.6 μ m, σ_x = 28 μ m, σ'_v = 3.2 μ rad, σ'_x = 19 μ rad

Pulse Length (rms) ~ 15 psec

NSLS-II Beamlines

19 straight sections for undulators

- Fifteen 6.6 m long low- β and four 9.3 m long high- β
- Highest brightness sources from UV to hard x-ray

8 straight sections for damping wigglers

- Each 9.3 m long high-β
- Broadband high flux sources from UV to hard x-ray

27 BM ports for IR, UV and Soft X-rays

These can also have three pole wigglers for hard x-rays

4 Large Gap BM ports for far-IR

At least 58 beamlines
More beamlines by canting multiple IDs per straight
Multiple end-stations/beamline are also possible

Aerial View: NSLS-II, NSLS & CFN

Site Plan

Key Project Milestones

Aug 2005CD-0, Approve Mission Need_______(Complete)

Jul 2007CD-1, Approve Alternative Selection and Cost Range______(Complete)

Jan 2008CD-2, Approve Performance Baseline______(Complete)

Dec 2008**CD-3**, Approve Start of Construction Feb 2009Contract Award for Ring Building

Aug 2009Contract Award for Storage Ring Magnets

Mar 2010Contract Award for Booster System

Feb 20111st Pentant Ring Building Beneficial Occupancy; Begin Accelerator Installation

Feb 2012Beneficial Occupancy of Experimental Floor

Oct 2013Start Accelerator Commissioning

Jun 2014Early Project Completion; Ring Available to Beamlines

Jun 2015 CD-4, Approve Start of Operations

Experimental Facilities Scope

- <u>WBS 1.04</u>: All phases of specification, design, procurement, installation, and commissioning of the six insertion device beamlines and instruments included in the project scope. Includes activities associated with planning the fully built-out facility, interacting with the user community.
- WBS 1.06.03: Integrated testing and pre-operations
- WBS 1.02.02: R&D in support of experimental facilities.

Project Beamlines

- Project beamline decision process by NSLS-II management included careful evaluations of the following:
 - submitted Letter of Interest (LOI)
 - external peer reviews
 - oral presentation and dialog at EFAC meeting May 2008
 - ranking of all LOIs by EFAC and EFAC recommendations
 - reviewers' comments at technical and project reviews, and
 - overall project priorities.
- Project beamlines are:
 - Inelastic x-ray scattering (IXS)
 - Hard x-ray nanoprobe (HXN)
 - Coherent hard x-ray scattering (CHX)
 - Coherent soft x-ray scattering (CSX)
 - High-energy X-ray powder diffraction (XPD)
 - Submicron resolution x-ray spectroscopy (SRX)

- Initial suite of insertion device beamlines
- Unique, world-leading characteristics
- Meet the needs of user community
- Enable new science

User Workshops and LOIs

- Beamline and strategic planning workshops held January-March 2008
- Received 11 Letters of Interest (LOIs) from groups wanting to form Beamline Advisory Teams (BATs) for the project beamlines and subsequent beamlines

- LOIs were reviewed by external reviews and Experimental Facilities Advisory Committee (EFAC). EFAC met May 5-7, 2008 and heard presentations from all 11 LOIs.
- EFAC report received June 2008.

Expt. Fac. Advisory Comm. (EFAC)

Hard X-ray Nanoprobe

BAT members

C. Noyan (Columbia) - Chair; D. Bilderback (Cornell); C. Jacobsen (SBU); T. Lanzirotti (U. Chicago);

B. Stephenson (ANL); P. Sutter (CFN - BNL); S. Vogt (ANL)

Hard X-ray Nanoprobe in Satellite Building

Inelastic X-ray Scattering

BAT members

C. Burns (WMU) - Chair; S-H. Chen (MIT); A. Cunsolo (APS, ANL); M. Krisch (ESRF); H-K. Mao (CIW);

T. Scopigno (U. Rome); S. Shapiro (CMPMSD, BNL); Y. Shvyd'ko (APS, ANL)

Coherent Soft X-ray Scattering & Polarization

BAT members

C. Sanchez-Hanke (BNL) – Chair;

H. Ade (NCSU); D. Arena (NSLS);

S. Hulbert (NSLS); Y. Idzerda

(MSU); S. Kevan (U. Oregon);

S. Wilkins (CMPMSD, BNL)

Experiment Station Apple-II EPU Z 150 100 50 Exit Pinhole Grating Monochromator Beam Chopper Vertical Slits 20 Entrance Slits Plane Grating Monochromator Υo -20 -20 Cylindrical Collimating Mirror White Beam Slits Storage Ring Shield Wall Toroidal Branching Mirror Shutter Defining Aperture & Absorber World-leading coherent flux speckle imaging & metrology

Scientific interests: strongly correlated systems, magnetic systems and fast magnetic dynamics

E = 0.2-2 keV, two branches: coherent scattering and polarization control

Coherent Hard X-ray Scattering

BAT members

B. Leheny (JHU) – Chair; K. Ludwig (BU); L Lurio (NIU); S. Mochrie (Yale); L. Pollack (Cornell); A. Robert (SLAC); A. Sandy (APS, ANL); O. Shpyrko (UCSD); M. Sutton (McGill U.)

X-ray Powder Diffraction

BAT members

S. Billinge (Columbia/BNL) – Chair; P. Chupas (APS, ANL); L. Ehm (SBU/BNL); J. Hanson (Chemistry, BNL); J. Kaduk (INEOS Technologies); J. Parise (SBU); P. Stephens (SBU) high-resolution7000 element strip detector for

Multi-crystal analyzer array for

U) ms time-resolved

Scientific interests: nanoparticles and nanoclusters, extreme environments, time -resolved and total structure studies.

Damping wigglers (7 m), high energy (30-100 keV), high-resolution diffraction plus pair -distribution function studies in side station

High Energy Station with High Resolution and Fast Strip Detector

Routine High Energy Powder Diffraction with CCD Camera

58m

Shutter

Sub-micron Resolution X-ray Spectroscopy

BAT members

T. Lanzirotti (Chicago) – Chair; S. Sutton (Chicago); S. Vogt (ANL); G. Woloschak (NU); M. Rivers (Chicago); P. Eng (Chicago); L. Miller (NSLS); J. Fitts (BNL); P. Northrup

(BNL)

Scientific interests: submicron imaging of elemental distribution in chemical and energy science, materials science, earth and environmental science, life science

Undulator beamline 2 – 25 keV. Mostly using XRF imaging. KB 100 nm main branch and FZP 30 nm side branch (not in initial scope)

World-leading x-ray brightness in 100x100 nm² focal spot size

IVU22 Undulator

Experimental Facilities R&D Program

- 1 nm focusing optics and nanopositioning
- 0.1 meV high-resolution optics
- X-ray beam position monitors
- Optical figure control (heat load, metrology)

The east wing of Bldg.703 is under renovation Seven labs to be ISO 7 (Class 10000) cleanrooms (4,200 ft²) to accommodate XFD R&D activities

Yan, Conley, Lima (NSLS-II); Maser, Macrander, Rose, Stephenson, et al. (ANL)

Cai, Huang, Honnicke (NSLS-II) Shvyd'ko (APS)

1 nm Optics R&D

Multilayer Laue Lenses (in collaboration with CNM/APS/MSD at

Argonne)

Yan, Conley, Maser, Macrander, Rose, Stephenson, et al.

1st far-field image of 2D MLL tested at APS 26-ID

Key Research Areas:

- 1)Fabrication of 1 nm outermost zone MLLs
- 2)Metrology of layer placement
- 3)Focus spot characterization
- 4) Fabrication of "wedged MLLs"

Effect of interfacial roughness: 19.5 keV, 5 nm MLL, t=10 µm

0.1 meV Progress: Testing CDW optics

Analyzer-monochromator combination setup

Next steps:

- Fabricate, assemble and test temperature controlled enclosures.
- Design "Comb Crystal" to significantly shorten
 D crystals (proposed by Yuri Shvyd'ko).
 Investigating cutting methods.
- Develop dedicated R&D beamline at NSLS.

Current Cost Baseline Is Unchanged

XFD WBS Level 3	Budget (K\$)	
1.02 R&D		
1.02.02 Experimental Systems R&D	19,167	→ \$19.2M
1.04 Experimental Facilities		
1.04.01 Experimental Facilities Management	4,513	
1.04.02-04, 06-07 Standard Components	1,801	
1.04.05 User Instruments (6 beamlines)	66,221	> \$76.3M
1.06 Pre-operations		
1.06.03 Experimental Facilities - Pre Ops	3,824	

- Added engineer and tech support during installation and testing. Total effort for beamline construction is 28.5 FTE-years/BL (was 23.1 in original estimate)
- Revised estimate for Nanoprobe satellite bldg. and beam-transport tunnel
- Adjustments have been made in initial beamline endstation instrumentation to offset increased cost due to added labor
- We are confident that the initial scope of all beamlines can be met within baseline XFD non-R&D budget of \$76.3M

Experimental Facilities Organization

BEAMLINE & INTERFACE MANAGER

Administrative Support - R. Robinson

Administrative Support

A. Broadbent

L. Rogers

NANOPROBE BEAMLINE A. Broadbent (I) **GROUP LEADER**

R. Conley J. Biancarosa K. Evans-Lutterodt (M) E. Lima H. Yan

HARD X-RAY COHERENT **BEAMLINE** A. Fluerasu GROUP LEADER

> L. Berman (M) L. Yang (M)

INELASTIC BEAMLINE Y. Cai GROUP LEADER

> X. Huang M. Honnicke Z. Zhong (M)

C. Sanchez-Hanke (M) S. Hulbert (M) L. Carr (M) D. Arena (M)

POWDER BEAMLINE A. Broadbent (I) GROUP LEADER

D.P. Siddons (M) L. Berman (M)

P. Northrup (M)

