

Institute for Atom-efficient Chemical Transformations (IACT)

A joint DOE Energy Frontier Research Center (EFRC) with

- Argonne National Laboratory
- Northwestern University
- Purdue University
- University of Wisconsin

APS Monthly Operations Meeting *February 23, 2011*

Alternative Energy Sources: Renewable And Sustainable

Supported by US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center

Current US Energy Demand

- 60% of petroleum is imported
 - A bio-fuels industry means energy security
- In the next 25 years, the US energy demand will grow by about 10% and world demand will double
 - A bio-fuels industry means stable, growing economy

Oil and the Refining Industry

- Oil is the lifeblood of America's economy.
 - HUGE INDUSTRY
- Supplies more than 40% of our total energy demands.
- More than 99% of the fuel we use in our cars and trucks.
- Replacing the feedstock and infrastructure is a massive, multi-decade undertaking.
- Biofuels <u>MUST</u> be phased in to work with existing infrastructure.

What Do Catalysts Do?

- Catalysts bind the reactants thereby facilitating their reaction to form products, i.e., the catalyst is a molecular match maker
- Catalysts lower the activation barriers to be surmounted between reactants and products
- Catalysts promote preferred pathway, minimizing the formation of byproducts

Catalysts – Nanoscale Materials that Enable Chemical Transformations

- Virtually all chemical transformation carried out in the energy and chemical industries depend on catalysis (>90%)
 - Generate U.S. sales in excess of \$400 billion per year.
 - Net positive balance of trade of \$16 billion annually.
- Catalyst activity and selectivity affect capital and operating costs of industrial processes
- The performance of catalysts is strongly linked to the physical and chemical properties of the active phase(s) of a catalyst

Impact on Catalysts on Fuel Production from Crude Oil

(42 gal/bbl)

Catalysts

- Increase yield
- Meet performance demands
- Reduce environmental impact

Biomass MUST be brought into this infrastructure in order to make a major impact.

Problems with blending biomass with gasoline and diesel

Selective oxygen

removal

Added hydrogen

- Oxygen content
 - Sugar and gasoline don't mix
- Volatility
 - C₆ sugars are solids & C₆ hydrocarbons are vapors
- Solubility
 - Ethanol adsorbs water into gasoline
- Low H/C ratio
 - Lower energy content
 - MPG of E85 is 70% of gasoline
- Location
 - H₂O content of biomass requires local processing

Higher hydrocarbons or alcohols

MW modification

Low severity processing

Catalyst Technology for Future Biofuels

- There are many possible routes for production of the next generation of bio-fuels
 - Multi-step and complex (high capital)
 - Many separations (low energy efficiency)
- Transformative technology will:
 - Reduce complexity by combining reaction steps or finding new, more efficient reaction pathways
 - Require new catalytic materials
 - Accelerate technology discovery with advanced simulation methods

Institute for Atom-efficient Chemical Transformations (IACT)

One of the state o

RESEARCH TEAM

Argonne National Laboratory
Northwestern University
Purdue University
University of Wisconsin

Vision:

• Chemical selectivity comparable to that demonstrated by nature.

Mission:

- Advance the science of catalysis for efficient conversion of bio-resources
- Improve the efficiency for conversion of biomass to fuels
- Promote the selective removal of oxygen.

Energy Frontier Research Centers

Multi-disciplinary Approach to Catalysis Research Four Linked but Separate Subtasks

Subtask 1 (Synthesis)

Isolated Mono-Functional Sites

Conventional picture of heterogeneous catalysts, such as oxide-supported metal particles or an acid/redox site on a bulk oxide.

Proximate Multi-Functional Sites

• Multiple functions (e.g., metal and acid) are positioned in three dimensions with separations on the nanoscale or less.

Synergistic Multi-Functional Sites

• Two or more surface functionalities are in such close proximity that they act simultaneously on a single functional group in the reactant molecule.

Subtask 1 (Synthesis) Multifunctional Bimetallic Catalysts

State of the Art Analytical Methods (under reaction conditions)

Theory, Modeling, and Simulation

- Geometric and Electronic Structure
- Reactant bonding and transition state
- Reaction intermediates
- Reaction rates
- Reaction mechanisms
- Prediction of new materials and reactivity

Institute for Atom-Efficient Chemical Transformations (IACT) Scheme for Bio-Fuel Production

Resources and Infrastructure

Argonne

- Advanced Photon Source (APS)
- Center for Nanomaterials (CNM)
- CSE NMR facility
- Atomic Layer Deposition (ALD)
- Computing Facilities (ALCF)

Northwestern

- Crystal Growth Facility
- Synthesis Labs

Purdue

- Environmental TEM
- Combinatorial Reactors

Wisconsin

- Computing Facilities
- Liquid Phase Reactor systems

IACT Educational Component

23 Principle Investigators

- 19 Post Doctoral Associates
- 14 Graduate Students
- 5 Undergraduate Students

Summary - IACT

- Advance the science of catalysis for the efficient conversion of energy resources
- Improve the efficiency for conversion of biomass to fuels
- Link and coordinate four distinct, but intimately interlinked subtasks:
 - Catalyst Synthesis
 - In situ Characterization
 - Computational Modeling
 - Catalytic and Chemical Reaction Science.

- Expertise of Four World Class Institutions
 - Argonne National Laboratory
 - Northwestern University
 - Purdue University
 - University of Wisconsin
- Highly Qualified Research Staff
 - 23 PIs
 - 19 Post Docs
 - 14 Graduate Students
- http://www.iact.anl.gov

