

Synchrotron Powder Diffraction Simplified: Mail-In and In-Situ Data Collection at 11-BM

Matthew Suchomel, Lynn Ribaud,

11-BM Staff: Structural Science Group (XSD)

Brian Toby, and Robert Von Dreele

Distinguished Alumni: now Theory & Software Group (XSD)

APS Beamline 11-BM

Dedicated to High Resolution Powder Diffraction

- Why Synchrotron Powder Diffraction ?
 - Established Technique, Widely Used & Understood
 - Offers Many Advantages Over Lab-Based Measurements
 - Provides Essential Structural Information for New Materials
 - In-Situ Probe: Real Materials Real Time
- Beamline Mission
 - World-Class Performance, User-Friendly Operation
 - Rapid-Access Measurements via Mail-In Program (50%)
 - Support High Resolution On-Site Experiments (50%)
- Brief History
 - DOE Proposal: 2003
 - Begin Construction: 2005
 - First Beam in Hutch: 2007
 - Start Mail-In Program: 2008
 - Launch On-Site Experiments: 2010

11-BM Beamline Overview

- Energy Range (BM): 10 35 keV
 - mail-in service optimized @ 30 keV (~ 0.4 Å)
- High Resolution: $\Delta d/d$ ($\Delta Q/Q$) ≈ 2×10⁻⁴
 - Nearly Equivalent to Best-In-World (ESRF, Diamond, etc.)
 - Highest resolution powder diffraction in the Americas
- Beam Focusing & Flux
 - Sagittal Crystal & Mirrors -> 500 x 200 um at sample
 - Typical BM Flux: 5×10¹¹ phs/sec @ 30 keV
- Supported Sample Environments
 - Cryostream (90 K 450 K), Hot Gas Blower (< 1000 °C)
 - Helium Cryostat (> 5 K), In-Situ Pressure & Gas Cells
- Robotic Arm → Automated Sample Loading
 - Robot + Database + Software → High Throughput Mail-In Service

11-BM Diffractometer

Huber 480 rotation stage: high precision (~0.35 arcsec) high accuracy (~1 arcsec) slew *or* step scans 12 analyzer array Si(111) crystals LaCl₃ detectors 2° apart in 2Θ

Multi-Crystal Detector Assembly

- 12 crystals/detectors
 - Individually adjusted
 (unique theta & chi angles)
 - 2° separation
 - Total 2Θ range = 22°
- Si(111) crystals
 - excellent discrimination
 - low background (& yield!)
 - LaCl₃ Scintillators

Multiple Observations

- Reduce Collection Time
- Improve Statistics
- Time Resolution

AES Design: Deming Shu & Curt Preissner

High Resolution Performance

Analyzer Crystals vs. Image Plate

Phase Transitions Impact Gas Storage in Metal Organic Frameworks (MOFs)

Secrets of a Mail-In Service High-Throughput with Minimal Effort

- Robotic Sample Loading Arm
 - 120+ Sample Capacity
 - Works Nights & Weekends
 - Optical Barcode Reader
- Bar Coded Sample Bases
 - Custom Hampton CrystalCap HT Bases
 - Magnetic Vial Cap
 - Kapton Capillary Tube (0.8 mm)
 - Unique Barcode for Each Sample
- Software & Databases (kudos to Brian Toby)
 - Automates Repetitive Tasks
 - Python, PHP/MySQL, HTML
 - Sample Tracking: Proposal to Disposal
 request -> receipt -> data -> disposal -> nagging for publications

Robot Action

How it Works - the User Perspective

- 1. Submit Rapid Access Proposal for Beamline
- 2. Request, Receive, and Prepare Sample Kits
- 3. Register Sample Info and Desired Scan
- 4. Ship Sample to APS Beamline
- 5. Download Data when Notified
- 6. Publish Data and Report Citations
 - free service for all non-proprietary users
 - > open to international users

User Perspective: Mail-In Workflow Features

- Convenient Web & Email Based-Workflow
 - Minimize Waiting for Staff Reply and Action
- User Responsible for Data Entry
 - No Repetitive Data Entry
 - User Responsible for Safety Information

- Sample & Data Security without Passwords
- Rapid Service No Travel
 - 3 weeks from Proposal to World-Class Data w/o Leaving the Lab
- Data Available Now (& Later)
 - Archived Storage for Data Retrieval Anytime

User Perspective: Requesting Sample Bases

- Received Notice of Accepted Rapid Access Proposal by E-Mail
- Web and E-Mail Instructions Guide User Step-by-Step
- User Data Entry Limited to <u>Red Text</u> Fields

User Perspective: Confirm Requests by E-mail

E-mail Confirmation Step Provides Security for Users & Staff

User Perspective: Enter Sample & Scan Info

000	♠ ♠ ♠ ♠ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑					
+ http://11bm.xor.aps.anl.gov/ C Qr Google						
11-BM Sample Registration						
sample bases to register for email: user@univ.gov						
Barcode	Scan	Formula	Name	APS Proposal		
ANL01235	100 K 🗘	A1203	Alumina	23452		
ANL01236	other 💠	С6Н12О6	Glucose	23452		
ANL01237				23452		
Required Safety Information: Check Appropriate Material Hazard(s): (<u>Definitions</u>) None Toxic Flammable Corrosive Oxidizer						
Radioactive Nano Bio Other: SUBMIT						

User Perspective: Safety Issues

- Required E-mail Confirmation Provides E-Signature
- Must Wait for "OK" <u>Before</u> Shipping Sample(s) to APS
- Automatic ESAF Submission Based on Supplied Information

From: 11-BM@aps.anl.gov

Subject: Sample Registration Approval

Registration for the following sample(s) has been approved:

Barcode	Scan	Formula	Name	Proposal	Hazards
ANL01235	100 K	Al2O3	Alumina	23452	None
ANL01236	other	C6H12O6	Glucose	23452	None

The **ESAF** will now be automatically generated for your experiment.

You may now send your sample(s) to the APS for data collection.

User Perspective: Obtaining Data

11-BM Collected Data

collected data for user with email: user@univ.gov

	Barcode	Temp (K)	File number	Date	Wavelength
X	ANL01235	100	apr11/11bmb_3691	2011-04-14	0.42133
X	ANL01236	295	apr11/11bmb_3692	2011-04-14	0.42133
	ANL01137	200	jan11/11bmb_1286	2011-01-28	0.84121

select data format (<u>Definitions</u>)

X.fxye (GSAS) .xye (Topas) .xy (FullProf) .csv (ASCI Text)

send data by email X (or) post to ftp site \square

SUBMIT

User Perspective: Reporting Citations

- Automatic Follow Up i.e. Periodic Nagging Emails
- Request to Update Sample Status (Analyzing, Published, Abandoned, etc)
- Response Tracked, Impacts Future Instrument Access

Subject: Sample Update Request

11-BM Staff request a status update for the following sample(s):

Barcode	File	Date	Sample	Proposal	Status
ANL01235	apr11/11bmb_3692	2010-04-14	Al2O3 (alumina)	23452	collected
ANL01236	apr11/11bmb_3691	2010-04-14	C6H12O6 (Glucose)	23452	collected

Please use the <u>status webpage</u> to modify sample(s) status and report citations making use of 11-BM data.

Behind the Curtains - the Staff Perspective

- Staff Web Interface to Sample Database
- Extensive Use of Handheld Bar-Code Scanners
 minimize typing (& typos!) for common tasks issuing bases, receiving & disposing samples

Staff Perspective - Simplify Repetitive Tasks

- Email Notifications for Mail-In Workflow Events
- Pre-Approved Packages Eases Sample Base Shipping
 - No transfer order required to ship out sample base kits

Staff Perspective - Convenient Data Reduction

Quick Visual Inspection of Data for "Quality Control"

Mail-In User Science Example

11-BM Provides Enhanced Structural Detail in Bio-Inspired Co(OH)₂

- Aqueous synthesis, inspired by biomineralization processes
- Promising ion exchange applications
- Brucite Structure: α-Co(OH)₂
 - disordered defects
- Compare 11-BM vs lab-based XRD
 - short wavelength avoids edges
 - superior counting statistics
 - greater resolution & observations

J. Neilson, et al. Inorg. Chem. 2009, 48, 11017-11023

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Mail-In User Science Example

Structure solution using 11-BM high-resolution pXRD data (no single crystal data)

- novel low temp catalyst synthesized in RE-Nb/Ta system → new phase of LaTaO₄
- potential photocatalysis applications for H₂ production, ion conductor for Li-batteries

- ✓ Mail-in data collected at APS 11-BM
- ✓ Patterns indexed using JADE
- Structure determined with FOX
- ✓ Refinement using GSAS

Nyman, Rodriguez et al (Sandia) Chem. Mater. v. 21 (2009)

Mail-In User Science Example

Unique Rapid Access Mail-In Program at APS beamline 11-BM Enables
High Impact Discovery of Quantum Critical Point Control by Chemical Tuning

Structural and bonding trends, obtained from high-resolution diffraction at the APS, show the collapse of tetragonal distortion in the layered intermetallic $SrCo_2Ge_{2-x}P_x$ system, driving ferromagnetic order and a quantum critical point transition.

Jia et.al., Nature Physics (2011) v. 7 p. 207

ANL "Drop-Off" User Example

- "Drop Off" Service for Argonne Community
- Extensive Use by MSE Division
- Ideal for Small or Air Sensitive Samples

Structural model and refinement of $Sc_{0.67}WO_4$ - new NTE material synthesized under high-pressure & high temperature methods

Measurement on < 100 mg of powder

Varga, Mitchell et al, JSSC, 2010 vol. 183 pp. 1567

Demand for a Mail-In Service?

- Plenty, and not just Domestically
- Web Page Traffic
 - ~ 150 hits/week
- Rapid Access Proposals
 - ~ 50 requests per cycle
 - > 15 already for 2011-2
- Mail-In Measurements
 - ~ 2,500 samples, > 7,500 files emailed
- Publications
 - > 60 Reported (since 2007)
 - ~ 10 in 2011 (to date)
- Industrial Users
 several per cycle, growing interest

But Wait, There's More!

- Also Supporting On-Site User Experiments (50% of shifts)
- Ideal In-Situ Probe: Real Materials Real Time
- User Friendly Interface with GUI-based Controls (R. Von Dreele)

Heating Samples

- Gas Blower Heats Capillaries to 950 °C
- Intermetallic and Ceramic Phase Transitions

superstructure peaks show tilt symmetry transition from triclinic to monoclinic SrLaCuTaO₆ Synchrotron XRD 373 K 1223 K West D, J App Cryst (2011) v 44 p 595 10 6.4 6.8 2θ (°), $\lambda = 0.414$ nm

Cooling Samples

Closed-Flow Helium Cryostat (> 5 K)

50 K

100 K

and Atmosphere Control

- Reaction Cells & Gas Flow Meters
- Gas Reduction or Humidity Studies

Zeolite degradation path varies with P_{H_2O} conditions

Bish Group, IU-Bloomington

Accomplishments & Future Plans

Unique Rapid Access Mail-In Program Established

- Offer World Class Data; Selection of Scan Parameters & Temps (100-450K)
- > 250 Unique Users, > 60 Publications to Date
- Future Growth Expected, but Approaching Capacity
- Challenges: Diverse User Background & Training (Sample Prep, Data Analysis)

Expanding On-Site Experiment Capabilities

launched summer 2010

- User Friendly GUI-based Control Software Nearing Completion
- New In-Situ Sample Environments:

Cryostream, Gas Blower, Cryostat (> 5 K), In-Situ Pressure & Gas Cells

What's Next?

- Expand Working Energy Range & Simplify Changing Energy
- Anomalous & Resonant Power Diffraction
- High temperature (> 1000 C) sample furnace
- Increased support for structure solution from powder

More Information

11-BM webpage: http://11bm.xor.aps.anl.gov/

email contact: 11BM@aps.anl.gov

11-BM Acknowledgements

11-BM staff (past & present): Lynn Ribaud, Brian Toby, Bob Von Dreele, Jennifer Doebbler, Jun Wang & Sytle Antao.

APS Support: Peter Lee, Mohan Ramanathan, Chuck Kurtz, Curt Preissner, Xuesong Jiao and many many others...

DOE grant proposal (2003) by J.F. Mitchell, J.D. Jorgensen, R.B. Von Dreele, P.L. Lee, & M.A. Beno

