## **Introduction toLattice Dynamics**

#### <u>J.S. Tse</u>

#### Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada







# The Dulong Pettit's Law

The **heat capacity** of a material is used to indicate that it takes different amount of heat to raise the temperature of different materials by a given amount.

Dulong and Petit's Law was discovered by these experimenters in 1819. The law states that for most elements the specific heat multiplied by the **atomic weight gives a constant number**.

Neumann and Regnault found that all compound bodies of similar **atomic** composition follow the same law. At **room temperature**, the difference for solids is about 5%.

| <u>Element</u> | <u>Specific Heat</u> | <u>Atomic Weight</u> | <u>Atomic Heat</u> |
|----------------|----------------------|----------------------|--------------------|
| Zinc           | .0955                | 65                   | 25.95              |
| Iron           | .1138                | 56                   | 26.64              |
| Tin            | .0562                | 118                  | 27.72              |
| Copper         | .0951                | 63.5                 | 25.24              |
| Lead           | .0314                | 207                  | 27.17              |
| Silver         | .0570                | 108                  | 25.73              |
| Gold           | .0324                | 196                  | 26.54              |

# The Dulong Pettit's Law

The **heat capacity** of a material is used to indicate that it takes different amount of heat to raise the temperature of different materials by a given amount.

Dulong and Petit's Law was discovered by these experimenters in 1819. The law states that for most elements the specific heat multiplied by the **atomic weight gives a constant number**.

Neumann and Regnault found that all compound bodies of similar **atomic** composition follow the same law. At **room temperature**, the difference for solids is about 5%.

| <u>Element</u> | <u>Specific Heat</u> | <u>Atomic Weich</u> | <u>Atomic Heat</u> |
|----------------|----------------------|---------------------|--------------------|
| Zinc           | .0955                | E E No5             | 25.95              |
| Iron           | .1138                | <b>0</b> 56         | 26.64              |
| Tin            | .0562                | 118                 | 27.72              |
| Copper         | 0981                 | 63.5                | 25.24              |
| Lead           | .0314                | 207                 | 27.17              |
| Silver         | .0570                | 108                 | 25.73              |
| Gold           | .0324                | 196                 | 26.54              |

# Sound and vibration Where the energy gone?

How do we know there are vibrations in matters (gas, liquid and solid)?



The acoustic velocity is related to the change in pressure and density of the substance

$$v_s = \sqrt{\frac{dP}{d\rho}}$$
: (Hooke's law)

## Heat Capacity

#### Heat capacity

is a measure of how much materials can store up heat as they change temperature.

**Dulong–Petit law (1819)** states that the gram-atomic heat capacity (specific heat times atomic weight) of an element is a constant; that is, it is the same for all solid elements, about six calories per gram atom.

Where the heat had gone? Or How heat can be stored in a solid ?

The molar specific heat of a solid at high temperatures can be explained using the equipartition theorem. The energy associated with vibrational motion (*e.g.* in the x direction)

$$U = \frac{1}{2}mv^2 + \frac{1}{2}k\Delta x^2$$

this corresponds to an average vibrational energy of  $6(12 \text{ k}_{\text{B}}\text{T}) = 3\text{k}_{\text{B}}\text{T}$  per atom. Therefore, the total internal energy (*E*) of a solid consisting of *N* atoms is  $3Nk_{B}\text{T} = 3\text{n}\text{RT}$ . The molar specific heat of a solid at constant volume is

$$C_v = \frac{1}{n} \frac{dU}{dT} = 3R \ (= 24.94 \ \text{JK}^{-1})$$



|       | C <sub>p</sub> (J/mol.K) |
|-------|--------------------------|
| Al    | 24.3                     |
| Fe    | 25.7                     |
| Ni    | 26.8                     |
| Cu    | 24.4                     |
| Pb    | 26.9                     |
| Ag    | 25.5                     |
| С     | 10.9                     |
| Water | 75.3                     |



There is a temperature dependence (*i.e.* distribution) of the oscillators! Introduce Bose-Einstein distribution,

$$\bar{n} = \frac{1}{\mathrm{e}^{\hbar\omega/k_{\mathrm{B}}T} - 1}$$

Energy levels are equally spaced!

the total internal energy of the solid  $U = 3N\hbar\omega\left(\bar{n} + \frac{1}{2}\right)$ 

$$C_{\rm v} = \left(\frac{\partial U}{\partial T}\right)_{\rm v} = 3Nk_{\rm B}F_{\rm E}\left(\frac{\hbar\omega}{k_{\rm B}T}\right)$$

$$F_{\rm E}(x) = \frac{x^2}{({\rm e}^x - 1)(1 - {\rm e}^{-x})}$$



#### Heat Capacity – Einstein/Debye model



Einstein Approximation: all modes (oscillators) have the same frequency  $\Rightarrow \omega_{\rm E}$ 

Debye approximation: In the low temperature limit acoustic modes dominate. *i.e.* there is distribution of vibration modes !

Therefore the total internal energy should be,



# Phonon in a box



the total energy in the lattice vibrations is of the form

$$U = 3 \int_{0}^{E_{\text{max}}} \frac{E}{e^{E/ET} - 1} dE$$

 $U = \frac{3\pi}{2} \int_{0}^{\infty} \frac{hv_s n}{2L} \frac{n^2}{e^{hr_s n/2L \lambda T} - 1} dn$ 

expressed in terms of the phonon modes by expressing the integral in terms of the mode number n.

$$\operatorname{let} x_{\max} = \frac{hv_{,R_{\max}}}{2LkT} = \frac{hv_{,s}}{2kT} \left(\frac{6N}{\pi V}\right)^{1/3} = \frac{T_{D}}{T} \text{ the integral takes the form } U = \frac{9NkT^{4}}{T_{D}^{3}} \int_{0}^{T_{D}} \frac{x^{3}}{e^{x} - 1} dx$$

## Heat Capacity - Debye model

Debye assumed a dispersion relationship (phonon in a box)

$$\omega_j(k) = ck$$

and a phonon distribution function

$$g(\omega)d\omega \propto 4\pi k^2 dr$$

therefore,

$$g(\omega) = D\omega^2$$

with a cutoff frequency,  $\omega_D$ 

$$g(\omega) = \frac{V}{2\pi^2} \left(\frac{1}{v_l^3} + \frac{2}{v_l^3}\right) \omega^2 = \frac{3V}{2\pi^2} \frac{\omega^2}{v_a^3}$$

$$U = \frac{3V\hbar}{2\pi^2 v_s^3} \int_0^{\infty} \omega^3 \frac{1}{\exp(\hbar\omega/kT) - 1} d\omega$$

$$c_V = \int_0^{\omega_{\rm D}} \frac{3V\omega^2}{2\pi^2 c^3} \hbar \omega \frac{\partial n}{\partial T} \,\mathrm{d}\omega$$



 $(3)_{50}$ Debye model
Measured  $g(\omega) \propto \omega^2$ 

### What can we learn from Debye temperature?



Table 4.5 Debye temperatures T<sub>D</sub>, heat capacities, and thermal conductivities of selected elements

|                                                                          |       | Crystal |       |         |       |       |       |       |
|--------------------------------------------------------------------------|-------|---------|-------|---------|-------|-------|-------|-------|
|                                                                          | Ag    | Be      | Cu    | Diamond | Ge    | Hg    | Si    | W     |
| $\overline{T_D(\mathbf{K})^*}$                                           | 215   | 1000    | 315   | 1860    | 360   | 100   | 625   | 310   |
| $C_m(\mathbf{J} \mathbf{K}^{-1} \operatorname{mol}^{-1})^\dagger$        | 25.6  | 16.46   | 24.5  | 6.48    | 23.38 | 27.68 | 19.74 | 24.45 |
| $c_s (J \text{ K}^{-1} \text{ g}^{-1})^{\dagger}$                        | 0.237 | 1.825   | 0.385 | 0.540   | 0.322 | 0.138 | 0.703 | 0.133 |
| $\kappa \; (\mathrm{W} \; \mathrm{m}^{-1} \; \mathrm{K}^{-1})^{\dagger}$ | 429   | 183     | 385   | 1000    | 60    | 8.65  | 148   | 173   |

# **Phonon band structure**



# **Phonon band structure**



#### Phonon Dispersion of Diamond Measured by Inelastic X-Ray Scattering



Intensity (Hz)



## **Theoretical lattice dynamics**

Force constant, Hooke's Law

$$\Phi_{\alpha\beta}^{ij} = \frac{\partial^2 E_{tot}}{\partial u_{\alpha}^i \partial u_{\beta}^j} = -\frac{\partial F_{\alpha}^i}{\partial u_{\beta}^j} \approx -\frac{F_{\alpha}^i}{u_{\beta}^j} \qquad i, j = 1, N$$

Dynamic matrix is the Fourier transformation of force constants

$$D_{\alpha\beta}^{ij}(q) = \frac{1}{\sqrt{M_i M_j}} \sum_{L} \Phi_{\alpha\beta}^{i,j+L} e^{-iq\Box(R^{j+L} - R^i)}$$

Diagonalize Dynamic matrix to get phonon dispersions, and DOS

$$\mathbf{u}(jl) = \frac{1}{\sqrt{Nm_j}} \sum_{\mathbf{k},\nu} \mathbf{e}(j,\mathbf{k},\nu) \exp(i\mathbf{k}\cdot\mathbf{r}(jl)) Q(\mathbf{k},\nu)$$





## **Selection rules**



Selection rules:

- Infrared
   Only "u" modes are active
   I ∝ |∂µ/∂q|<sup>2</sup>
- Raman
   Only "g" modes are active
   I ∝ |∂α/∂q|<sup>2</sup>

 NRVS All modes are active
 I ∝ VDOS

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562



B.K. Rai, et.al., Biophys. J., 82, 2951 (2002)



**Properties derived from sound velocity** 

H.K. Mao, et.al., Science **292**, 914 (2001)

## **Properties derived from vibrational density of states**

The partition function for the harmonic lattice is given by

$$\ln Z^N = -3N \int \ln\left(2\sinh\frac{\beta E}{2}\right) g(E) \,\mathrm{d}E$$

the vibrational energy per atom

$$U = -\frac{\partial \ln Z}{\partial \beta} = \frac{3}{2} \int E \coth \frac{\beta E}{2} g(E) \, \mathrm{d}E$$

vibrational entropy per atom S

$$S = k_{\rm B}\beta U + k_{\rm B}\ln Z$$

the free energy per atom F

$$F = -\frac{1}{\beta} \ln Z$$

the specific heat per atom at constant volume

$$c_V = \frac{\partial U}{\partial T} = k_{\rm B} \beta^2 \frac{\partial^2 \ln Z}{\partial \beta^2} = 3k_{\rm B} \int \left(\frac{\beta E}{2\sinh(\beta E/2)}\right)^2 g(E) \,\mathrm{d}E$$

mean force constant

$$F_m = \frac{9}{10} \frac{k^2}{E_r} k_{\rm B}^2 \theta_{\rm D}^2$$



H.K. Mao, et.al., Science 292, 914 (2001)



J.F. Lin, J.S. Tse, et.al., *Phys. Rev.* B 84, 064424 (2011).





#### Soft mode and Gruneisen parameter





#### **Anharhominicity in Phonons**



- 1. The heat capacity becomes T independent for  $T>T_D$ .
- 2. There is no thermal expansion of solids.
- 3. Thermal conductivity of solids is infinite

#### **Anharhominicity in Phonons**

- 1. The heat capacity becomes T independent for  $T>T_D$ .
- 2. There is no thermal expansion of solids.
- 3. Thermal conductivity of solids is infinite

$$U(x) = U_{harm}(x) + U_{anharm}(x) = cx^2 - gx^3 - fx^4$$



Phonon wavefunctions for (Left) harmonic potential (Right) anharmonic potential

If the lattice potential is harmonic, the phonon frequencies are volume-independent, and the thermal expansion coefficient is zero at all temperatures.

#### **Finite temperature lattice dynamics**



#### **Thermal conductivity**

hot end

cold end

$$U(x) = U_{harm}(x) + U_{anharm}(x) = cx^2 - gx^3 - fx^4$$



## **Mossbauer Nuclei**



Elements of the periodic table which have known Mössbauer isotopes (shown in red font).

| Isotope           | $E_0$ (keV) | $\tau$ (ns) | Strength |
|-------------------|-------------|-------------|----------|
| <sup>181</sup> Ta | 6.214       | 8730        | 0.0007   |
| <sup>169</sup> Tm | 8.410       | 5.8         | 0.38     |
| <sup>83</sup> Kr  | 9.404       | 212         | 0.2      |
| <sup>73</sup> Ge  | 13.263      | 4260        | 0.000 03 |
| <sup>57</sup> Fe  | 14.4125     | 141         | 1        |
| <sup>151</sup> Eu | 21.541      | 14          | 0.63     |
| <sup>149</sup> Sm | 22.496      | 10.2        | 1.3      |
| <sup>119</sup> Sn | 23.88       | 25.7        | 6.7      |
| <sup>161</sup> Dy | 25.651      | 40.5        | 1.2      |
| $^{40}$ K         | 29.83       | 6.1         | 391      |



Energy (meV)

D.D. Klug, J.S. Tse, et.al., Phys. Rev. B 83, 184116 (2011)