

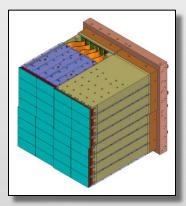
RASHPA: a High Performance Data Transfer Framework for 2D Detectors

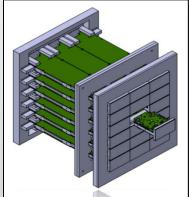
Pablo Fajardo Fabien Le Mentec Thierry Le Caer Christian Herve Alejandro Homs-Puron

Detectors & Electronics / Software
Instrumentation Services and Development Division
ESRF

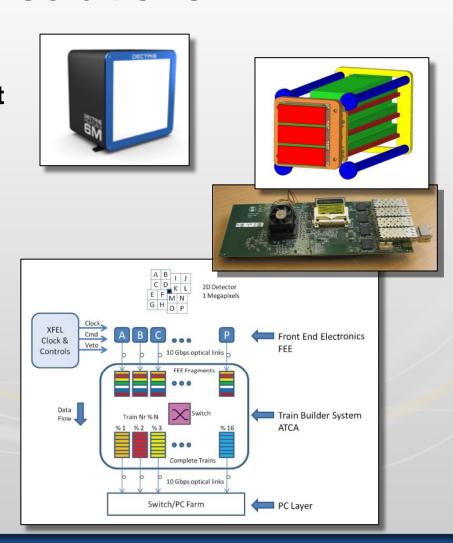
Talk outline

- Introduction
 - Context
 - Motivation
- RASHPA Goals & Design
 - High performance
 - Functionality & Scalability
- Present & Near Future
 - Current status & Next steps
 - Conclusions

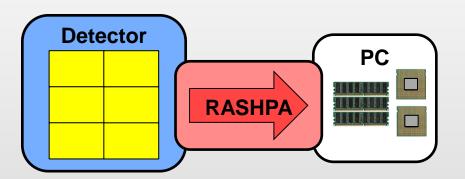



High performance detectors

- Increase X-ray source brilliance
- High frame rate: 1 10 KHz
- Large detectors
- CMOS Parallel ADCs: 10 GByte/s
- Pixel detectors
 - Single chips: 100 MByte/s
 - Basic modules: 0.5 1 GByte/s
 - Multi-module: 10+ GByte/s
- Data transfer can limit sensor speed
- Proprietary solutions

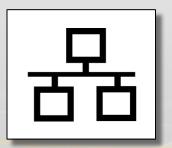


Data transfer solutions


- Mostly based on 10 Gigabit Ethernet
- Specific protocols
- Detector-centric
- UDP transport simplifies FEE
- Complex frame builders
- Backend PC is not always a priority
- Difficult to optimize performance
 - Memory copy

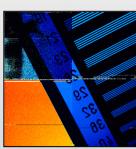
RASHPA Goals

- Generic data transfer framework
- Oriented to area detectors:
 - Asymmetric bandwidth
 - Knowledge of geometries
- Scalable:
 - Multi-link controllers
 - Multi-module detectors
- Parallel data streams:
 - Raw, Region-of-Interest, Live, Metadata
- Backend PC-friendly:
 - Efficient access to host memory
 - Minimal CPU overhead event driven



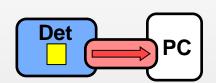
High speed technology

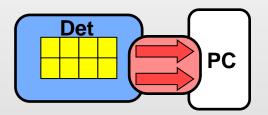
- Help detector readout design
- Simplify backend PC solutions
- Use industry standards
 - PCI-Express
 - 10/40 Gigabit Ethernet
 - ... Infiniband
- Avoid proprietary protocols

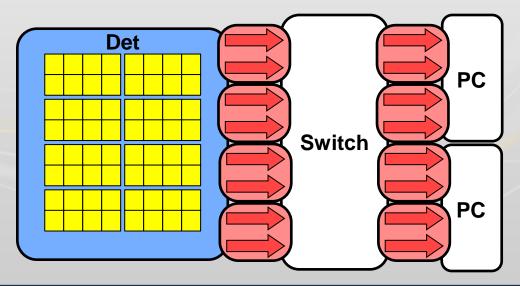


Detector Geometries

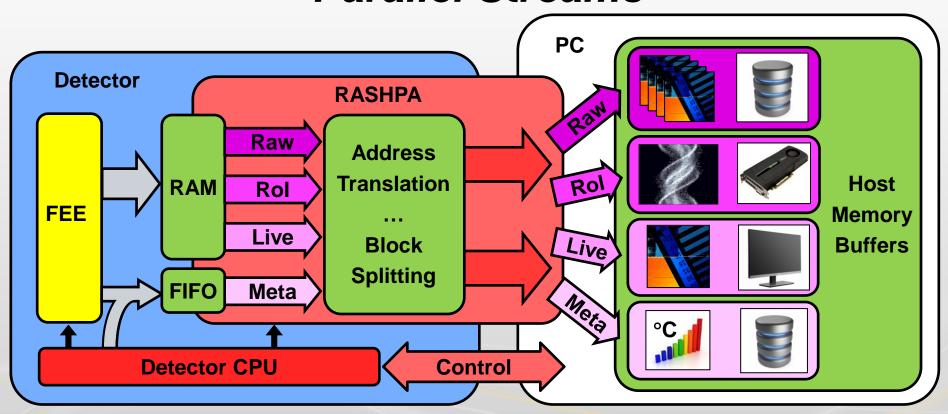
- Memory management consistency
- Chip & module tiling:
 - Detector frame reconstruction
 - Hardware writes in corresponding quadrant
 - Avoid unnecessary memory copies
- Image transformations are expensive to CPUs
 - Rotation, Flip, Rol
 - Much faster in hardware
- RASHPA can:
 - Perform some basic manipulations at transfer level
 - Coordinate advanced operations on the detector
 - Propagate geometries to memory management




Scalable topology


- Multi-link controllers
- Low-profile detector ⇒ single link
- High-performance detector:
 - Full speed ⇒ need multiple links

- Multiple controllers
- Connected to the same PC
- Or to multiple PCs
- Switches might be used



Robustness and Flexibility

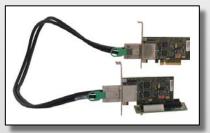
- Data integrity
- Detector event notification
- Flow control
 - Strict overrun detection
- High level description meta-language
 - Detector capabilities & RASHPA configuration
- Multi-band detectors data hierarchy
 - Variable block size event list mode
- Different multi-buffer strategies
- Advanced transfer paths in the future
 - To Disks NVM Express
 - To dedicated data processing board or GPU memory

Parallel Streams

Detector has a CPU controlling:

- Front End Electronics
- RASHPA

Multiple data streams:


- Dedicated buffer sets
- Different priorities

Current status

- Single-link demonstrator:
 - Xilinx Kintex 7 FPGA (KC705)
 - One Stop Systems Expansion Kit
 - PCI-Express Gen-2 x4
 - Re-use in-house FPGA architectures
- Under development:
 - FPGA firmware
 - Linux drivers & libraries
- 10 Gigabit Ethernet experience available
- Simulation environment using QEMU
 - Hardware described in VHDL or C

Next steps

Final project deliverables:

- Multi-link demonstrator, or
- Large-scale detector simulation
 - Validation of functionality
 - Not cycle-accurate, does not show true performance
 - Running exactly the same software
- RASHPA specification

Conclusions

- RASHPA aims to be a high-performance, scalable architecture
- Not limited to fast data transport layers or protocols
 - Handle detector geometries, data hierarchy and dynamics
 - Help with image reconstruction
 - Provide parallel streams
 - Detector capabilities ⇒ Software auto-configure
 - Generic backend hardware and software solutions
- Single-link demonstrator is under development
- Future deliverables:
 - RASHPA specification
 - Multi-link demonstrator / simulation

Thank you for your attention!