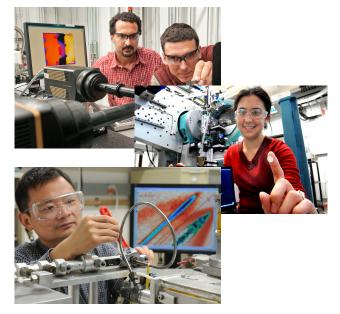
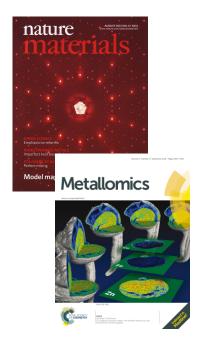
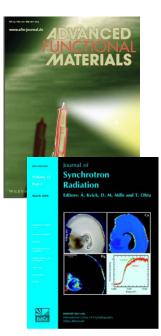


X-RAY SCIENCE DIVISION FY2018 PRIORITIES

JONATHAN LANG


X-ray Science Division

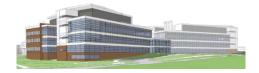

Photon Sciences Directorate


APS All-Hands Meeting October 18, 2017

X-RAY SCIENCE DIVISION - MISSION

Enable and conduct world-class research using x-rays by developing cuttingedge x-ray instrumentation and techniques.

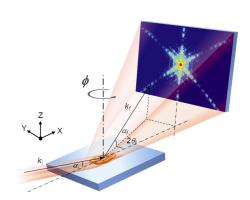
Operate 36(+2) of 67 beamlines; partner in 3 additional beamlines APS CY16: **1889** (1035) **publications** ~18% high impact; > 5500 users



X-RAY SCIENCE DIVISION STRATEGY

Leverage unique characteristics of APS.

- High brilliance
 - APS-U 3000 pm-rad to ~42 pm-rad
- High energy storage ring (> 20 keV x-rays)
 - Deep penetration enables measurements deep inside samples, high-pressure, in-situ environments,
- Unique timing structure
 - Large intra-bunch separation (24 (48) vs. many bunches)
- Large range of end-stations/capabilities
 - Multiple techniques; High-throughput
- Co-location with a programmatic research lab
 - Opportunities for collaborations to develop more complex set-ups/environments; staff engagement in large scale scientific thrusts

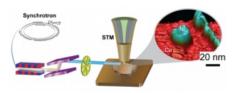


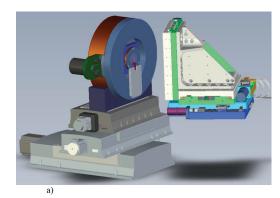
X-RAY SCIENCE DIVISION STRATEGY

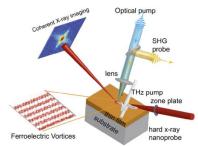
- Near term (pre-upgrade)
 - Enhance and expand core capabilities related to APS-U
 (Nanofocusing, Coherence, Imaging, High-Energy, ...)
 - Prototype optics, detectors, instruments, and data strategies relevant to APS-U
 - Develop effective lab (& external) partnerships to improve APS capabilities & strengthen ANL programmatic research. (in-situ / in-operando environments,)
 - Improved automation & capabilities for core techniques
 - · High-throughput XRD, PDF, SAXS, ...
 - Mission Readiness & Obsolesce
 - APS >20 yrs. Old → replace aging infrastructure:
 - Cryo-pumps; mirrors; vacuum systems, motion controls, detectors, ...

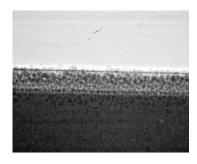
XSD BEAMLINE STRATEGY

- Long-term (APS Upgrade)
 - APS-U beamlines
 - Design and develop "feature" beamlines within APS-U core scope
 - Implement APS-U "enhancements" & make strategic investments under operations to remainder of beamline suite.
 - X-ray technologies for APS-U
 - Consider beamline, sample environments, scanning systems, detectors, data pipe-lines & analysis as a complete integrated system





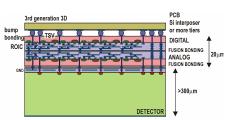


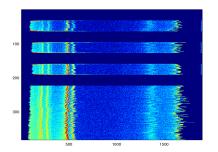

FY18 BEAMLINE PROJECTS

- High brilliance
 - APS-U R&D beamline. Test optics and concepts for nextgeneration beamlines
 - PRISMA, 3D imaging of integrated circuits using ptchography
- High energy x-rays
 - High-throughput HEDM experimental end-station leveraged by funded NSF proposal (Carnegie-Mellon)
- Timing
 - Instrument for studies of mesoscale dynamics using multiple pump-probe excitations/detection methods. (ECA - H. Wen)
- New capabilities/ Lab partnerships
 - Helical SCU commissioning and testing
 - Additive manufacturing opportunities (32-ID, 1-ID, 34-ID, ...)
 - Complete X-TIP beamline construction (APS/NST)

High-speed imaging of AM

XSD FY2018 PLANS – DETECTORS


APS Detector Pool


- Expand Selection of Integrating Pixel Array Detectors
 - Jungfrau detector for high-photon-rate applications (>2k fps; 64 GB/s)

Detector R&D (focus on areas where no COTs solutions)

- Transition Edge Sensors (TESs) (APS/NIST/SLAC)
 - High energy resolution (1-5 eV) spectroscopy. Beamline detectors by FY2020
- VIPIC (Vertically Integrated Photon Imaging Chip) (BNL/FNAL/APS)
 - Ultra-Fast XPCS. Complete 1-Mpixel detectors for APS, NSLS-II
- Germanium Strip (BNL/APS)
 - 1-D energy resolving detector for high-energy applications (EDD, XRD).
 Complete 2-3 detectors for APS, NSLS-II
- High-Energy, High Dynamic Range Area Detectors (Cornell/APS)
 - DOE Proposal to deliver two 100K-pixel detectors to APS beamlines by FY2021

XSD FY2018 PLANS – OPTICS

Low-emittance sources require optics with dramatically smaller figure errors and tailored profiles. Novel ways to fabricate, measure, and simulate these optics are required.

Modular deposition system

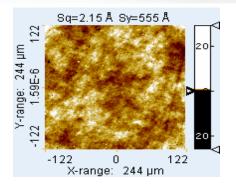
Develop velocity profiling for laterally graded multilayers and in situ metrology for mirrors

Wavefront-preserving mirrors

Develop non-invasive wave-front sensing (with SLAC, ALS, NSLS-II)

Mirror-based zoom optics for variable focal spot size

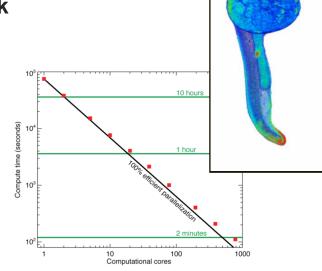
Develop optical profiler for adaptive mirrors (LDRD)


APS-U: Zone Plate R&D

Demonstrate 16 nm focus, stacked zone plates instrument

■ Focusing Optics for 40-100-keV X-rays to <1 µm</p>

Sawtooth and kinoform refractive lenses, S. Shastri (XSD) (with NSLS-II)

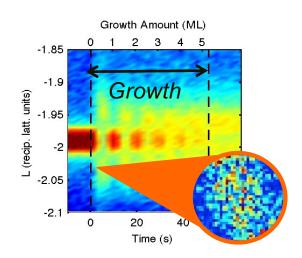


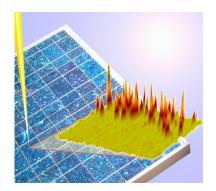
INTELLIGENT DAQ, ANALYSIS & MANAGEMENT

Strategic Priorities

- Experiment control software that enables adaptive feedback
 - eg, Bluesky (NSLS-II), project MONA
- High-performance computing (HPC) for fast analysis
 - Work with ALCF, NERSC, and Argonne LCRC for on-demand utilization of leadership facilities
- Novel Algorithms that enable multimodal, multiscale experiments, and minimize dose, etc
- Facility-wide data management and distribution services

Zn


GOAL:


Smart system that couple acquisition, analysis, and feedback for adaptive experiment control, acquiring only the data needed to answer the scientific question

X-RAY SCIENCE DIVISION FY18 GOALS

- Maintain active and productive user programs on all XSD operated beamlines
- Develop innovative instrumentation that further advances beamline capabilities particularly for high-energy, coherence, nano-focusing,
- Complete current beamline development plans
 - APS-U R&D beamline (28-ID); PRISMA
 - High throughput HEDM
 - X-TIP (4-ID)
- Meet FY18 milestone deliverables for DOE funded optics and detector projects (VIPIC, wave-front preserving mirrors, ...)
- Work with APS-U to complete designs of "feature" beamlines and implementation of "enhancements" to broader beamline suite.
- Continue to attract, develop, and retain a diverse set of talented scientific and technical staff.

