

The APS Upgrade Project Status

Robert Hettel

Director, APS Upgrade Project Argonne National Laboratory

APSUO/PUC Meeting

October 24, 2018

International High Energy 4GSR Development

Our plans for the APS Upgrade enable the United States to maintain a world leadership position in storage ring-based x-ray sources

THE APS Upgrade: building a world-leading hard X-ray facility

Small-Beam Scattering & Spectroscopy

- Nanometer imaging with chemical and structural contrast; few-atom sensitivity
- Room-temperature, serial, single-pulse pink beam macromolecular crystallography

Resolution with Speed

- Mapping all of the critical atoms in a cubic millimeter
- Detecting and following rare events
- Multiscale imaging: enormous fields of view with high resolution

Coherent Scattering & Imaging

- Highest possible spatial resolution: 3D visualization; imaging of defects, disordered heterogeneous materials
- XPCS to probe continuous processes from nsec onward, opening up 5 orders of magnitude in time inaccessible today,

APS-U – High Brightness Storage Ring Lattice

APS and APS-U chambers

100x – 1000x increase in brightness and coherence of Ångstrom and sub-Ångstrom X-rays

APS-U Lattice

- Storage ring consists of 40 Sectors. Each with 33 arc magnets; 27.6 meters / sector
- Each sector is hybrid 7BA (Raimondi et al., ESRF) with longitudinal bends and reverse bends (Streun et al., PSI). (First standard 7BA built for MAX-IV.)
- Vacuum systems integrated with magnets, supports, insertion devices, front ends

APS-U ensures that the United States maintains world leadership in light sources

APS-U Parameters

Quantity	APS Now	APS MBA Timing Mode	APS MBA Brightness Mode	Units
Beam Energy	7	6	6	GeV
Beam Current	100	200	200	mA
Number of Bunches	24	48	324	
Bunch Duration (rms)	34	104	88	ps
Energy Spread (rms)	0.095	0.156	0.130	%
Bunch Spacing	153	77	11	ns
Emittance Ratio	0.013	1	0.1	
Horizontal Emittance	3100	31.9	42.2	pm-rad
Horizontal Beam Size (rms)	275	12.6	14.5	$\mu\mathrm{m}$
Horizontal Divergence (rms)	11	2.5	2.9	μ rad
Vertical Emittance	40	31.7	4.2	pm-rad
Vertical Beam Size (rms)	10	7.7	2.8	$\mu\mathrm{m}$
Vertical Divergence (rms)	3.5	4.1	1.5	μ rad

APS-U Preliminary Design Report, September 2017

Bunch Swap-Out Injection

- Requires 2 nC per shot for 372bunch, 200-mA high brightness mode
- Requires 16 nC per shot for 48bunch, 200 mA timing mode – a challenge for the Injector at the moment

Novel Insertion Devices – SCAPE (NOT INCLUDED IN PROJECT)

- APS-U small, round vacuum chambers (6 mm diam)
 - Novel polarizing SCUs
 - Superconducting Arbitrary
 Polarizing Emitter → SCAPE
- Polar beamline
 - Significant upgrade to 4-ID
 - Goal is fast switching circular or linear polarization
 - In situ experiments on magnetic materials
- Does not impact KPPs

APS-U Project Scope

APS-U Feature Beamlines

Location	Name	Title	Science Lead	Technique
28-ID	CHEX	Coherent High-Energy X-ray Sector for In Situ Science	Robert Winarski Brian Stephenson	In situ, surface high-energy coherent scattering
4-ID	Polar	Polarization modulation spectroscopy	Daniel Haskel	Magnetic spectroscopy
20-ID	HEXM	A High-Energy X-ray Microscope	Sarvjit Shastri Jon Almer	High-energy microscopies & CDI
8-ID	XPCS	Development of a Small-Angle X-ray Photon Correlation Spectroscopy Beamline for Studying Dynamics in Soft Matter Wide-Angle X-Ray Photon Correlation Spectroscopy and	Suresh Narayanan	Small-angle XPCS
		Time-Resolved Coherent X-Ray Scattering Beamline	Alec Sandy	Wide-angle XPCS
33-ID	Ptycho	PtychoProbe	Volker Rose	Ultimate resolution, forward scattering ptychography/spectromicroscopy
19-ID	ISN	InSitu Nanoprobe Beamline	Jörg Maser	In-situ, forward scattering ptychography/spectromicroscopy Long working distances
9-ID	CSSI	Coherent Surface Scattering Imaging Beamline for Unraveling Mesoscopic Spatial-Temporal Correlations	Jin Wang Jiang Zhang	Coherent GISAXS, XPCS
34-ID	ATOMIC 3DMN	Atomic – A beamline for extremely high resolution coherent imaging of atomistic structures 3D Micro & Nano Diffraction	Ross Harder Jon Tischler	Diffraction microscopy & CDI Bragg CDI Upgrade of current 34-ID

+ enhancements of X-ray optics, instrumentation and end station components for many existing beamlines

Long Beamline Building Conceptual Design

Photon Transport Simulation Tools

Levels of simulation: accuracy vs efficiency

Analytical method

- Mathematica/Excel
- Gaussian beam profile
- Optics acceptance
- Focusing condition using geometric magnification and diffraction formula
- Fast optimization of the beamline layout with reasonable accuracy

Numerical method

- SHADOW, Ray, McXtrace, xrt
- **HYBRID** (add diffraction)
- SRW, Phase
- More accurate source profile
- Effects of non-ideal optics
- Effects of optics vibration and misalignment
- Beam intensity, spot size, divergence, and energy spectra
- Optics specification and mechanical requirements

Mutual coherence

- The Mutual Optical Intensity (MOI) model
- Multi-electron SRW
- Coherent mode decomposition method
- Comsyl
- Partially coherent source and propagation through optics
- Local coherence and wavefront

Cohberent wavefront preservation

APS-U Accelerator Technology

Sextupole

Q-Bend Magnets M3,M4

In-House Design Fast Bipolar Power Supply*

M1 Longitudinal-Gradient Dipole

Single Cell 1.4 GHz

Superconducting Harmonic Cavity (two

in house)

Fundamental Power

Couplers

APS-U Beamline and ID Technology

Velociprobe: fast scanning nano-probe

revolver IDs

high heat load front end

prototype compact wavefront sensor

Key Performance Parameters

Key Performance Parameter	Thresholds (Performance Deliverable)	Objectives
Storage Ring Energy	> 5.7 GeV, with systems installed for 6 GeV operation	6 GeV
Beam Current	≥ 25 mA in top-up injection mode with systems installed for 200 mA operation	200 mA in top-up injection mode
Horizontal Emittance	< 130 pm-rad at 25mA	\leq 42 pm-rad at 200mA
Brightness @ 20 keV ¹	$> 1 \times 10^{20}$	$> 1 \times 10^{22}$
Brightness @ 60 keV ¹	$> 1 \times 10^{19}$	$> 1 \times 10^{21}$
New APS-U Beamlines Transitioned to Operations	7	≥ 9

 $^{^1}photons/sec/mm^2/mrad^2/0.1\% BW$

A Transition to Operations Plan is being developed

Beamline Transition to Operations Parameters

Beamli ne	TTOP Brightness ¹ Thresholds	TTOP Brightness ¹ Objectives	TTOP Energy (keV)	Energy Range (keV)	Description
Polar	> 5.7 x 10 ¹⁹	> 8.4 x 10 ²¹	9	2.75 – 27	Magnetic spectroscopy beamline with polarization control for studies of electronic materials at extreme conditions. Beamline can take full advantage of novel polarizing undulators developed for the APS-U storage ring.
XPCS	> 1.0 x 10 ²⁰	> 7.5 x 10 ²¹	20	8 – 25	X-ray photon correlation spectroscopy beamline with instruments for small- and wide-angle scattering designed for the study of dynamic heterogeneity in complex materials.
CSSI	> 5.0 x 10 ¹⁹	> 3.8 x 10 ²¹	20	6 – 30	Coherent surface scattering imaging beamline to explore the structure and dynamics of low dimensional, mesoscale, heterogeneous systems.
ISN	> 5.0 x 10 ¹⁹ Focus ² < 50 nm	> 7.5 x 10 ²¹ Focus ² < 20 nm	20	4.8 – 30	A scanning nanoprobe optimized for large working distances and in situ experiments
HEXM	> 1.0 x10 ¹⁹	> 2.2 x10 ²¹	60	35 – 120	High-energy x-ray microscope for experiments on in situ environments for materials science and engineering applications.
CHEX	> 4.5 x 10 ¹⁹	> 3.3 x 10 ²¹	20	5 – 60	One tunable and three fixed-energy beamlines designed for coherent, high-energy x-ray in-situ diffraction studies of materials synthesis and chemical transformations.
Ptycho	$> 1.5 \times 10^{20}$ Focus ² < 50 nm	$> 1.8 \times 10^{22}$ Focus ² $< 5 \text{ nm}$	10	5 – 30	Ultimate spatial resolution, ultra-fast scanning nanoprobe with ptychography for extremely high-resolution structural measurements.
ATOMIC	> 4.5 x 10 ¹⁹	> 3.4 x 10 ²¹	20	5 – 30	Bragg coherent diffraction imaging to study materials with spatial resolution of one nm or better. Zoom optics allow variable spot sizes so that the x-ray probe can be matched to the needs of individual experiments.
3DMN	> 2.9 x 10 ¹⁹	> 2.5 x 10 ²¹	20	5.3 – 30	3D diffraction nanoscope using both pink and monochromatic x-rays to study materials structure and mechanical behavior.

- Brightness measurement required for each new beamline.
- For completion of beamline transfer to operations: Threshold TTOP must be met or exceeded; key equipment is verified to be in place and working

¹ Brightness = photons/sec/0.1% BW/mm²/mrad²

² FWHM

APS-U Project Schedule

Removal, Installation, and Commissioning Schedule

TASK	Removal		Installation							Commissioning				Float
IASK		Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Mo	onth 9	Month 10	Month 11	М	onth 12
Remove IDs and front ends														
Remove mezzanine electronics														
Remove magnet girder assemblies														
Prepare tunnel surfaces														
Install magnet modules														
Install mezzanine electronics														
Install front ends														
Install insertion devices														
Integrated system testing w/o beam														
Accelerator Readiness Review														
Commissioning														
Float														

- The plan was developed from the bottom up.
- The plan has been reviewed multiple times.
- Consensus: The plan is achievable

APS-U Budget and Funding Profile for CD-2

WBS Element	WBS Description	Total Estimated Cost (\$M)
	Total Estimated Cost (TEC)	
U1	APS Upgrade Project – previous scope costs	35.4
U2	APS Upgrade Project – Multi Bend Achromat	610.7
U2.01	Project Management	57.9
U2.02	Conceptual Design and Development	49.4
U2.03	Accelerator Systems	250.0
U2.04	Experimental Facilities	186.2
U2.05	Front Ends and Insertion Devices	67.2
	Contingency(TEC)	150.4
	Sub-total (TEC)	796.5
	Other Project Cost (OPC)	
U1	APS Upgrade Project – previous scope OPC	8.5
U2	APS Upgrade Project – MBA OPC	7.1
	Contingency (OPC)	2.9
	Sub-total (OPC)	18.5
	Total Project Cost	815.0

- 30% cost contingency
- 28 months schedule contingency
- scope contingency under evaluation
- long lead procurements in process (CD-3b)

Funding (BA) in Millions of Dollars (Then-year Dollars)												
	All Prior Years	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023	Total
OPC	8.5									5.0	5.0	18.5
TEC	40.0	20.0	20.0	20.0	42.5	93.0	130.0	150.0	159.8	121.2		796.5
Total	48.5	20.0	20.0	20.0	42.5	93.0	130.0	150.0	159.8	126.2	5.0	815.0

FTEs by Resource Type

- Ramping up Project staff as proceed to CD-3
- APS Operations-funded staff will participate in accelerator and beamline commissioning

Safe practices are an utmost priority for ANL and the APS-U project

Worker Safety

- Exemplary ES&H performance is essential for the successful execution and completion of this project
- We are committed to a strong Integrated Safety Management approach for the Project; we strive to prevent all accidents and injuries

Accelerator and Beamline Safety

- Well-integrated and well-planned Accelerator Readiness Review (ARR) process is essential for the successful execution and completion of this project
- We are fortunate to be able to build upon a strong culture of operational rigor and discipline and a well-developed radiation safety program at the APS

High Level Organization for ANL

High Level Organization for APS and APS-U

APS-U project management team is in place and ready to deliver the project

Jim Kerby Project Manager

Robert Hettel
APS Upgrade Project Director

Tom Fornek
Integration Manager

Elmie Peoples-Evans
Project Operations

Glenn Decker Accelerator Systems

Mohan Ramanathan Front-ends and IDs

Dean HaeffnerExperimental Systems

Summary

- The APS-U enables the United States to maintain a world leadership position in storage-ring x-ray sources
- The APS-U project is well underway with many designs in an advanced stage;
 contracts for many components have already been issued
- Accelerator and experimental system R&D programs have been successful
- A long-lead procurement program has been initiated to reduce project risks with a prioritized sequence of purchases
- Conducting the project in a safe manner is a high priority
- Approach to dark time + dark time + commissioning will be disruptive
- Working diligently on reaching CD-3 in FY19

