

# X-RAY SCIENCE DIVISION FY2020 PRIORITIES



#### JONATHAN LANG

X-ray Science Division

Photon Sciences Directorate

APS All-Hands Meeting July 24, 2019

## X-RAY SCIENCE DIVISION - MISSION

Enable and conduct world-class research using x-rays by developing cuttingedge x-ray instrumentation and techniques.







Operate 35 (+9) of 68 beamlines; partner in 2 additional beamlines

APS CY18: **2016** (1089) **publications** ~1,8% high impact; > 5700 users



## X-RAY SCIENCE DIVISION STRATEGY

Take advantage of unique characteristics of APS.

### **High Energy**

Penetrating bulk materials and operating systems



#### **Brightness/Coherence**

Highest possible spatial resolution/dynamics



#### **Time-Resolved Studies**

Measurements from ~100 ps to seconds





#### **Argonne National Lab**

Leverage ANL core research programs & advanced computing facilities to enhance x-ray capabilities & scientific productivity





## X-RAY SCIENCE DIVISION STRATEGY

Take advantage of unique characteristics of APS.



- Enhance and expand core capabilities related to APS-U
  - High-Energy, Nanofocusing, Coherence, Imaging, ...
- Develop optics, detectors, instruments, and data strategies relevant to APS-U
- Foster effective lab & external partnerships to improve APS capabilities & strengthen ANL research.
- APS-U/APS beamlines
  - Develop "feature" beamlines
  - Implement "enhancements" & strategic investments to full APS beamline suite.
- Operate suite of world-class x-ray capabilities for the US scientific community.



Bragg coherent diffraction imaging phase retrieval of high-energy X-rays scattered by a gold nanoparticle



## RECENT PROGRESS

- Early Career Research Program
   Haidan Wen (2016) Zhang Jiang (2018)
   (Timing/Coherence)
- Completed X-TIP beamline at 4-ID (Lab Partnership CNM / XSD – MIC & MM)
- High-Throughput HEDM instrument at 6-ID-D (NSF; Carnegie Mellon; XSD – MPE & MM)
- Achieved sub-300 ps synchronization of MEMS based optics (CNM / XSD – TRR)
- Acceptance test of RAVEN ptychographic laminography instrument at SLS ( iARPA / XSD-MIC)











## **XSD FY20 BEAMLINE TECHNOLOGIES**

Consider beamline, sample environments, scanning systems, detectors, data pipe-lines & analysis as a complete integrated system

- Advanced experiment control and execution software
  - Bluesky (NSLS-II), MONA
- Develop HPC tools for fast (real-time) analysis
  - Forge ties with ASCR programs to develop analysis pipelines and on-demand queues, in-order to effectively utilize leadership computing facilities (DOE-BES/ASCR cross facility pilot)
- Transition Edge Sensors (APS/NIST/SLAC)
  - Deploy high energy resolution (10-20 eV) spectroscopy detector on the beamline.
- Develop Zoom Optics to provide controllable beam size at the sample position.
- Upgrade APS metrology capabilities to be APS-U ready.









## **XSD FY20 BEAMLINE PROJECTS**

- Work with APS-U on buildout of IDEA beamline at 28-ID. Implement R&D program for optics and concepts for next-generation beamlines
- Install RAVEN instrument for ptychographic imaging of integrated circuits
- Cant 2-ID beamline to rationalize spectromicroscopy capabilities and prepare for APS-U
- Work with APS-U on construction of ASL at 25-ID and relocation 20-ID ( & portions 11-ID-D & 7-ID programs)
- Develop AI and ML approaches for data analysis and rapid experimental feedback at the beamlines (CDI, XES, Materials synthesis, ...)







## X-RAY SCIENCE DIVISION FY20 GOALS

Maintain active and productive user programs on all XSD operated beamlines

Develop innovative instrumentation that further advances beamline capabilities particularly for high-energy, coherence, nano-focusing, ....

- Complete current beamline development plans
  - APS-U IDEA beamline (28-ID); RAVEN instrument
  - Start ASL construction at 25-ID
  - Cant 2-ID to rationalize spectro-microscopy
- Work with APS-U on feature beamlines and implementation of enhancements to broader beamline suite.
- Ensure safety is of primary concern in achieving this work.
- Continue to attract, develop, and retain a diverse set of talented scientific and technical staff.



