Site-Selective EXAFS Spectroscopy

P. Glatzel, ¹ U. Bergmann, ^{1,2} S. P. Cramer ^{1,2}

¹ University of California, Davis, CA, U.S.A.

² Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.

Conventional fluorescence-detected EXAFS spectroscopy is element specific but averages over all chemical forms of an element. It is desirable to extend the selectivity of EXAFS spectroscopy to mixed-valent compounds, i.e., compounds that contain one element in different chemical forms. This is possible by taking advantage of the chemical dependence of x-ray fluorescence lines to record site-selective fluorescence-detected absorption spectra. We used the chemically sensitive K β fluorescence emission to record Fe K-edge absorption spectra of the high-spin (HS) and low-spin (LS) site in Prussian Blue (Fe₄(Fe(CN)₆)₃. The K β spectra were recorded at the BioCAT beamline 18-ID at the Advanced Photon Source. A large-acceptance crystal-array analyzer was employed to record the fluorescence emission. The K β spectra of (Fe₄(Fe(CN)₆)₃ as well as Fe₂O₃ and K₄Fe(CN)₆ as models for the HS and LS site are shown in Fig. 1.

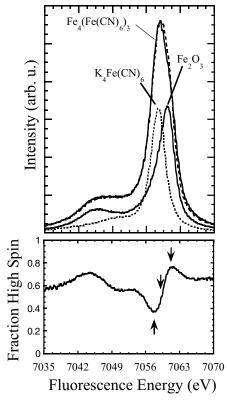


FIG. 1. Kb spectra.

 Fe_2O_3 and $K_4Fe(CN)_6$ were used to determine an approximate HS/LS ratio in the $K\beta$ spectrum of Prussian Blue, as shown in Fig. 1, lower panel. Three fluorescence-detected EXAFS spectra were taken at the fluorescence energies indicated in Fig. 1, as

well as a non-site-selective EXAFS spectrum in transmission mode. The HS/LS ratio obtained from the models was used to deconvolute the experimental data in a least square fit and to obtain the best approximation of the 'pure' EXAFS at the HS and LS site, respectively. The deconvoluted site-selective Fourier filtered and k-weighted EXAFS data are shown in Fig. 2. For the EXAFS fit (dotted lines in Fig. 2), multiple scattering has to be included. EXAFS analysis of the site-selective spectra and curve-fitting data analysis yield the crystallographic distances and physical Debye-Waller factors. We therefore conclude that site-selective EXAFS spectroscopy is a viable tool to study mixed-valent compounds.

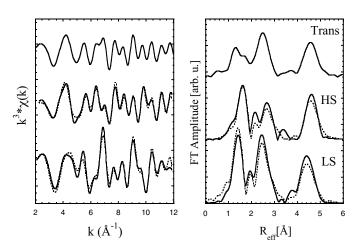


FIG. 2. Site-selective EXAFS in Prussian Blue.

Acknowledgments

Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences und Contract No. W-31-109-ENG-38. Bio-CAT is a National Institute of Health-supported Research Center RR-08630.

References

- ¹ D.C. Koningsberger, and R. Prins, eds., *X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES* (Wiley, New York, 1988).
- ² A. Meisel, G. Leonhardt, and R. Szargan, *X-Ray Spectra and Chemical Binding*, Vol. **37** (Springer-Verlag, New York, 1989).
- ³ U. Bergmann, and S.P. Cramer, SPIE Proc. **3448**, 198-209 (1998).