EXAFS Study of As-Doped HgCdTe
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Introduction

The semiconducting alloy HgCdTe (MCT) is an interesting
system because its tunable, narrow band gap makes it an ideal
material for infrared detector and diode laser applications. While
MCT-based infrared technology continues to evolve toward
increasingly complex device structures, there is a pressing need
for improved doping profiles and doping levels on the p and n
sides of junctions. Arsenic has become a prime choice as a p-type
dopant, and its incorporation into HgCdTe layers during molecu-
lar beam epitaxy (MBE) growth has been demonstrated.! Howev-
er, the As-doped HgCdTe layers show highly compensated n-type
properties. The source of this behavior does not appear to be asso-
ciated with As dopants but rather unidentified structural defects
acting as donors.” Extended x-ray absorption fine structure
(EXAFS) measurements are uniquely suited to probe the local
atomic structure in these systems. We present EXAFS measure-
ments of the As and Hg local environments in MBE- grown
HgCdTe layers with in sifu As incorporation.

Methods and Materials

All measurements were made at the Pacific Northwest Con-
sortium Collaborative Access Team (PNC-CAT) insertion device
beamline (sector 20-ID). Energy selection was achieved using a
liquid-nitrogen-cooled double-crystal Si(111) monochromator,
with the second crystal detuned ~30% for harmonic rejection.
Both the As K-edge (11868 eV) and Hg Liy-edge (12284 eV)
EXAFS were measured for three HgCdTe:As samples, with As-
dopant content: 10%, 10'°, and 10'¢ cm™. The sample preparation
method is described elsewhere.’ The Hg;..Cd, alloy composition
of these samples is x = 0.17, and the thickness of the films is ~2.5
um. The samples were under ambient conditions. The incident
signal was monitored with a helium-filled ion chamber, and the
fluorescence yield from the sample was measured with an argon-
filled ion chamber. The effective As K, fluorescent signal was
~107 p/s, and typical spectra were obtained in ~1 hour. Back-
ground subtraction was performed using AUTOBK.* Fourier
transforms to R-space were done using k> weighting and Hanning
windows, over the range k = 3.5 Altok=9.5A" and tok = 10.5
A1, for the As and Hg edges, respectively.

Results

Figure 1 shows the measured fluorescence yield for the 10%°
cm As-doped HgCdTe sample for both the As K- and Hg L~
edges. The close proximity of the two absorption edges limits the
spectral range of the As K-edge EXAFS signal, but we find that
this limitation is currently only problematic in the low As con-
centration data. The As EXAFS signal after background subtrac-
tion is shown in Fig. 2 for the most concentrated sample. Figure
3 shows the Fourier transforms of both the As and Hg EXAFS for
this sample.
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FIG. 1. Raw data: As K-edge and Hg Ly-edge absorption measured by

fluorescence of HgCdTe:As with As-dopant concentration 10%° cm?.
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FIG. 2. Arsenic EXAFS of HgCdTe:As with As-dopant concentration
10%cm3,
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FIG. 3. Fourier transform of the As K- and Hg Ly-edge EXAFS of
HgCdTe:As with As-dopant concentration 10%° cm?.



Discussion

We are presently investigating self-absorption effects in the
EXAFS signals and modeling the data with the theoretical stan-
dards of FEFF7° for a more quantitative determination of the local
atomic structure. Comparisons to the ab initio, quasi-thermody-
namical models of Grein et al." will be made, and detailed results
will be published soon.

For future data collection, we intend to use a fluorescence
detector with energy discrimination in order to increase the spec-
tral range of the As K-edge data past the interfering Hg L-edges.
This will also increase the EXAFS quality in the low As content
measurements.
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